Изобретение относится к способам получения дизельного топлива и может быть использовано в нефтеперерабатывающей промышленности.
Известен способ получения дизельного топлива путем глубокого гидрирования газойлей каталитического крекинга в присутствии сульфидного никель-вольфрамового катализатора.
Гидрирование проводят при давлении 25-30 МПа и температуре 360-400oС. В результате из сырья, содержащего до 1,5 мас. серы и до 60 мас. сульфируемых углеводородов (суммарно непредельные и ароматические) получают продукт, характеризующийся содержанием серы 0,01-0,02 мас. и до 10 мас. ароматических углеводородов (непредельные углеводороды отсутствуют). Указанный продукт отвечает требованиям технических условий на топливо дизельное экологически чистое (ЭЧДТ) с содержанием серы до 0,05 мас. и ароматических углеводородов до 10 мас. [1]
Недостатком способа является возможность его реализации лишь под давлением 25-30 МПа, что влечет за собой повышенную металлоемкость, а также значительные капитальные и эксплуатационные затраты. Также известен способ получения дизельных и реактивных топлив путем двухступенчатого гидрирования нефтяных дистиллятов, выкипающих в интервале температур 150-310oС. Способ заключается в предварительной гидроочистке исходного сырья на обычных промышленных катализаторах до получения остаточного содержания серы в гидрогенизате на уровне 50-100 ррм и последующей деароматизации гидрогенизата в присутствии платинового (палладиевого) катализатора. Способ осуществляют при давлении 5-7 МПа и температуре 300-400oС. Технологическая схема оформлена в виде двух автономных ступеней с раздельными системами циркуляции водородсодержащего газа.
В результате получают продукт, содержащий менее 12 мас. ароматических углеводородов и менее 0,03 мас. серы [2]
Недостатками способа являются: необходимость использования двух автономных систем циркуляции водородсодержащего газа (две ступени); использование на второй ступени палладиевых (платиновых) катализаторов, весьма чувствительных к сернистым соединениям; необходимость применения давления 5-7 МПа (что несколько выше рабочего давления типичных установок гидроочистки).
Все указанные выше способы существенно осложняют технологическую схему процесса и повышают себестоимость получаемой продукции.
Наиболее близким к заявляемому является способ получения дизельного топлива, включающий двухступенчатое гидрирование прямогонных дистиллятов или их смесей с газойлями крекинга в присутствии никель-вольфрамовых или никель-молибденовых катализаторов при давлении 5,08-10,15 МПа и температуре 316-329oС. Способ позволяет снизить содержание ароматических углеводородов от 19-33 до 5-18 мас. при глубоком снижении содержания серы. На первой ступени осуществляют предварительную обработку исходного сырья в присутствии никельмолибденового катализатора до остаточного содержания серы 100-200 ррм, а затем полученный гидрогенизат подвергают гидрогенизационной обработке в присутствии никель-вольфрамового катализатора. При этом достигается снижение содержания ароматических углеводородов до 5-15 мас. [3] Недостатком способа является как использование двух автономных ступеней, так и относительно повышенной давление (5,08-10,15 МПа). Оба указанных обстоятельства существенным образом удорожают процесс гидрогенизации за счет повышенных капитальных и эксплуатационных затрат.
Технической задачей изобретения является улучшение экологических и эксплуатационных характеристик целевого продукта при одновременном снижении давления водорода в процессе гидрообработки.
Эта задача решается тем, что в предлагаемом способе получения дизельного топлива исходное сырье подвергают гидрогенизационной обработке в три стадии на различных катализаторах в общем контуре водородсодержащего газа при давлении водорода в зоне реакции 3,0-4,8 МПа.
На первой стадии исходное сырье подвергают гидрированию, при этом протекают реакции превращения наиболее реакционноспособных полициклических ароматических углеводородов и некоторой части непредельных углеводородов. Условия процесса: температура 300-390oС, давление 3,0-4,8 МПа, объемная скорость подачи сырья 3-7 ч-1. В качестве каталитической композиции используют два последовательно загруженных катализатора: алюмо-кобальт-молибденовый (АКМ) (20% загрузки) и алюмоникель-молибденовый (АНМ) (80% загрузки). Состав алюмо-кобальт-молибденового катализатора, мас. оксид кобальта 3-6, оксид молибдена 16-19, оксид алюминия остальное. Состав алюмо-никель-молибденового катализатора, мас. оксид никеля 3-6, оксид молибдена 16-19, оксид алюминия остальное.
На второй стадии гидрированное сырье подвергают гидроочистке, при этом протекают реакции превращения сернистых соединений и непредельных углеводородов. Условия процесса: температура 330-400oС, давление 3,0-4,8 МПа, объемная скорость подачи сырья 2,5-12,0 ч-1. В качестве катализатора используют кобальт-молибденовую композицию следующего состава, мас. оксид кобальта 2-5, оксид молибдена 13-20, оксид алюминия остальное.
На третьей стадии осуществляют деструктивную деароматизацию. При этом протекают реакции глубокого превращения ароматических углеводородов и частичной деструкции парафиновых углеводородов. Условия процесса: температура 320-400oС, давление 3,0-4,8 МПа,объемная скорость подачи сырья 4,0-12,0 ч-1. В качестве катализатора используют цеолитсодержащую композицию следующего состава, мас. оксид никеля 15-25, оксид молибдена 30-50, оксид кремния 8-15, оксид редкоземельных элементов (РЗЭ2О3) 5-15, Al2O3 остальное. Соотношение загрузок катализаторов составляет: катализаторы гидрирования 30-65% катализатор гидроочистки 10-25% катализатор деароматизации 25-45% При этом из исходных сырьевых дистиллятов прямой перегонки или их смесей с газойлями вторичного происхождения (содержание серы до 1,5 мас. ароматических углеводородов до 30 мас. получают дизельное топливо, характеризующееся содержанием серы менее 0,05 мас. и ароматических углеводородов менее 20 мас. (и даже менее 10 мас.).
Пример 1. Гидрогенизационной обработке подвергают прямогонную дизельную фракцию (содержание серы 1 мас. ароматических углеводородов 22 мас.). На первой стадии (гидрирование) используют последовательно загруженные алюмо-кобальтмолибденовый и алюмо-никель-молибденовые катализаторы. Состав АКМ катализатора, мас. оксид кобальта 3, оксид молибдена 16, оксид алюминия остальное. Состав АНМ катализатора, мас. оксид никеля 3, оксид молибдена 16, оксид алюминия остальное. Условия процесса: давление 3 МПа, температура 300oС, объемная скорость подачи сырья 7,0 ч-1.
На второй стадии (гидроочистка) используют кобальт-молибденовый катализатор, содержащий, мас. оксид кобальта 2,0, оксид молибдена 13,0, оксид алюминия остальное. Условия процесса: давление 3 МПа, температура 330oС, объемная скорость подачи сырья 12 ч-1.
На третьей стадии (деструктивная деароматизация) используют цеолитсодержащий никель-молибденовый катализатор следующего состава, мас. оксид никеля 15, оксид молибдена 50, SiO2 8, PЗЭ2О3 5, оксид алюминия остальное. Условия процесса: давление 2 МПа, температура 320oС, объемная скорость подачи сырья 12 ч-1.
Соотношение загрузок катализаторов составляет: катализаторы гидрирования 65% катализатор гидроочистки 10% катализатор деструктивной деароматизации 25%
В результате получают ЭЧДТ, содержащее менее 0,05 мас. серы и менее 20 мас. ароматических углеводородов.
Пример 2. Гидрогенизационной обработке подвергают смесь прямогонно дизельной фракции и газойля каталитического крекинга (содержание серы 1,3 мас. ароматических углеводородов 28 мас.).
На первой стадии (гидрирование) используют последовательно загруженные алюмо-кобальт-молибденовый и алюмо-никельмолибденовый катализаторы. Состав АКМ-катализатора, мас. оксид кобальта 4,5, оксид молибдена 18,0, оксид алюминия остальное. Состав АНМ-катализатора, мас. оксид никеля 4,5, оксид молибдена 18,0, оксид алюминия остальное. Условия процесса: давление 4 МПа, температура 330oС, объемная скорость подачи сырья 5,0 ч-1.
На второй стадии (гидроочистка) используют кобальт-молибденовый катализатор, содержащий, мас. оксид кобальта 3,5, оксид молибдена 16,0, оксид алюминия остальное. Условия процесса: давление 4 МПа, температура 355oС, объемная скорость подачи сырья 5,5 ч-1.
На третьей стадии (деструктивная деароматизация) используют цеолитсодержащий никель-молибденовый катализатор, содержащий, мас. оксид никеля 20, оксид молибдена 40, SiO2 10, РЗЭ2О3 10, оксид алюминия остальное. Условия процесса: давление 4 МПа, температура 340oС, объемная скорость подачи сырья 7 ч-1.
Соотношение загрузок катализаторов по стадиям составляет: катализаторы гидрирования 50% катализатор гидроочистки 15% катализатор деструктивной деароматизации 35% В результате получают ЭЧДТ, содержащее менее 0,05 мас. серы и менее 20 мас. ароматических углеводородов.
Пример 3. Гидрогенизационной обработке подвергают смесь прямогонной дизельной фракции и газойля термического крекинга (содержание серы 1,7 мас. ароматических углеводородов 31 мас.).
На первой стадии (гидрирование) используют последовательно загруженные алюмо-кобальт-молибденовый и алюмо-никельмолибденовый катализаторы. Состав АКМ-катализатора, мас. оксид кобальта 6,0, оксид молибдена 19,0, оксид алюминия остальное. Состав АНМ-катализатора, мас. оксид никеля 6,0, оксид молибдена 19,0, оксид алюминия остальное.
Условия процесса: давление 4,8 МПа, температура 390oС, объемная скорость подачи сырья 3 ч-1.
На второй стадии (гидроочистка) используют кобальт-молибденовый катализатор, содержащий, мас. оксид кобальта 5,0, оксид молибдена 20,0, оксид алюминия остальное. Условия процесса: давление 4,8 МПа, температура 400oС, объемная скорость подачи сырья 2,5 ч-1.
На третьей стадии (деструктивной деароматизации) используют никель-молибденовый катализатор, содержащий, мас. оксид никеля 25, оксид молибдена 30, SiO2 15, РЗЭ2О3 15, оксид алюминия остальное. Условия процесса: давление 4,8 МПа, температура 400oС, объемная скорость подачи сырья 4 ч-1.
Соотношение загрузок катализаторов по стадиям составляет: катализаторы гидрирования 30% катализатор гидроочистки 25% катализатор деструктивной деароматизации 45%
Таким образом, предлагаемый способ позволяет вырабатывать экологически чистое дизельное топливо путем гидрогенизационной обработки при умеренном давлении водорода и с использованием достаточно простой технологической схемы.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ГИДРОГЕНИЗАЦИОННОГО ОБЛАГОРАЖИВАНИЯ ДИЗЕЛЬНЫХ ДИСТИЛЛАТОВ | 2005 |
|
RU2293757C1 |
СПОСОБ ОБЛАГОРАЖИВАНИЯ НЕФТЯНЫХ ДИСТИЛЛАТОВ | 1994 |
|
RU2072386C1 |
КАТАЛИЗАТОР ГИДРОПЕРЕРАБОТКИ И СПОСОБ ГИДРОПЕРЕРАБОТКИ НЕФТЯНОГО И КОКСОХИМИЧЕСКОГО СЫРЬЯ С ЕГО ИСПОЛЬЗОВАНИЕМ | 1996 |
|
RU2102139C1 |
СПОСОБ ПОЛУЧЕНИЯ МОТОРНЫХ ТОПЛИВ | 2002 |
|
RU2205200C1 |
СПОСОБ ПОЛУЧЕНИЯ УГЛЕВОДОРОДНОГО ТОПЛИВА | 1994 |
|
RU2072387C1 |
СПОСОБ ПОЛУЧЕНИЯ ДИЗЕЛЬНОГО ТОПЛИВА | 2002 |
|
RU2221838C1 |
СПОСОБ ОБЛАГОРАЖИВАНИЯ БЕНЗИНОВЫХ ДИСТИЛЛЯТОВ | 1995 |
|
RU2087524C1 |
СПОСОБ ПОЛУЧЕНИЯ МОТОРНЫХ ТОПЛИВ | 1993 |
|
RU2039788C1 |
СПОСОБ ПЕРЕРАБОТКИ ВАКУУМНЫХ ДИСТИЛЛАТОВ | 2015 |
|
RU2605950C1 |
СПОСОБ ПОЛУЧЕНИЯ АВТОМОБИЛЬНОГО БЕНЗИНА | 1996 |
|
RU2091438C1 |
Изобретение относится к способу получения дизельного топлива и может быть использовано в нефтеперерабатывающей промышленности. Способ получения дизельного топлива включает гидрогенизационную обработку исходного нефтяного сырья в три стадии на различных катализаторах в общем контуре водородсодержащего газа при давлении водорода в зоне реакции 3,0-4,8 МПа при следующем соотношении загрузки катализаторов, мас.%: катализаторы гидрирования 30-65, катализатор гидроочистки 10-25, катализатор деструктивной деароматизации 25-45. Способ позволяет получать экологически чистое дизельное топливо. 3 з. п.ф-лы.
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
Химия и технология топлив и масел., N 3, 1993, с | |||
Нивелир для отсчетов без перемещения наблюдателя при нивелировании из средины | 1921 |
|
SU34A1 |
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
Сборник трудов ВНИИНП, выпуск ХХХУШ, М., 1978, с | |||
Паровоз для отопления неспекающейся каменноугольной мелочью | 1916 |
|
SU14A1 |
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. | 1921 |
|
SU3A1 |
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. | 1921 |
|
SU3A1 |
Устройство для усиления микрофонного тока с применением самоиндукции | 1920 |
|
SU42A1 |
Авторы
Даты
1997-11-10—Публикация
1996-04-09—Подача