Изобретение относится к химии кетонов, а именно к способам получения пинаколина.
В промышленности пинаколин применяется как растворитель лаков, красок, является полупродуктом при синтезе лекарственных и душистых веществ, пестицидов группы триазинов и других.
В литературе описан целый ряд методов получения пинаколина. Например, пинаколин можно получать пинаколиновой и аналогичными ей перегруппировками пинаконгидрата с выходом 80-90 %, взаимодействием хлорангидрида триметилуксусной кислоты с элементорганическими (цинка, олова) соединениями с выходом до 80 %, взаимодействием сложных эфиров с магнийорганическими соединениями в присутствии сложных катализаторов, выход продукта составляет 80-90 %, перегруппировкой тетраметил-1,2-диокситана под действием трехфтористого бора в апротонных растворителях, выход 32-58 %, восстановлением окиси мезитила цинком в растворе гидроокиси натрия или калия в присутствии солей меди в качестве катализатора, выход около 58 %. Пинаколин также может быть получен методами, основанными на реакции Принса, а именно - взаимодействием изоамиленов или их производных с формальдегидом или его производными в присутствии в качестве катализаторов. В большинстве своем эти методы, вследствие малой доступности и дороговизны реагентов, сложности процессов и ряда других причин, представляют собой только теоретический интерес.
Наиболее близким к изобретению является способ получения пинаколина взаимодействием 2,3-диметилбутена-2 с муравьиной кислотой и перекисью водорода в среде серной кислоты и в присутствии азотсодержащего катализатора.
Однако этот способ характеризуется низким (60%) выходом целевого продукта и большим количеством сточных вод, которые образуются при нейтрализации отработанного катализатора.
Целью изобретения является повышение выхода целевого продукта и исключение образования сточных вод.
Цель достигается тем, что в качестве исходного непредельного углеводорода используют 2,3-диметилбутадиен-1,3, который подвергают гидратации с одновременной перегруппировкой при температуре 70 - 170oC и аутогенном давлении в среде находящихся в рецикле 5-60 % водных растворов серной, фосфорной, фосфоновой или дисфосфоновой кислот или 5-30 % водных растворов кислых солей щелочных металлов этих кислот или смесей указанных кислот и их солей. Исходные концентрации водных растворов катализаторов поддерживают добавлением воды. Водные растворы кислот, солей и их смесей используются в процессе длительное время.
Предлагаемый способ позволяет получить целевой продукт с выходом 93-98 %, исключив образование сточных вод. Процесс прост в аппаратурном оформлении и может быть осуществлен в непрерывном исполнении.
Пример: В ампулу емкостью 15 мл загружают 6 мл водного раствора катализатора и 4 мл 2,3-диметилбутадиена-1,3. Ампулу герметизируют, погружают в термостат при температуре 70-170oC, затем через 5 мин включают вибратор. Через каждые 5 мин встряхивания ампулу отсоединяют от вибратора, охлаждают и анализируют органический слой. Анализ проводят на хроматографе "Цвет" с пламенно-ионизационным детектором. Сорбент 10 % полиэтиленгликоля ПЭГ-6000 на хроматоне N - AW (0,25-0,315).
Колонка длиной 2 м, диаметр 4 мм.
Объем пробы 1 мкл.
По достижении максимальной степени конверсии 2,3-диметилбутадиена-1,3 органический слой отгружают с помощью шприца, а водный раствор после доведения до заданного состава водой используют вновь.
Полученные результаты сведены в табл.1.
Примеры длительности использования катализатора приведены в табл.2.
Таким образом, предлагаемый способ имеет существенные преимущества в сравнении с прототипом:
позволяет получить продукт с высоким (93-98 %) выходом и, при этом практически исключить образование сточных вод.
В качестве базового варианта принят способ получения пинаколина электрохимической димеризацией ацетона с последующей перегруппировкой (19,5). Выход пинаколина по ацетону составляет 48 %. При этом на 1 т целевого продукта при воспроизведении метода образуется 16 м3 сточных вод и 1,4 м3 органических отходов.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОЛУЧЕНИЯ ПИНАКОЛИНА | 1985 |
|
RU2110509C1 |
СПОСОБ ПОЛУЧЕНИЯ ПОЛНЫХ ЭФИРОВ АЛКИЛФОСФОНОВЫХ КИСЛОТ | 1981 |
|
RU2107689C1 |
СПОСОБ ПОЛУЧЕНИЯ АМИНОБЕНЗОЙНЫХ КИСЛОТ | 1995 |
|
RU2110511C1 |
СПОСОБ ПОЛУЧЕНИЯ β ФЕНИЛЭТИЛОВОГО СПИРТА | 1995 |
|
RU2086528C1 |
СПОСОБ ПОЛУЧЕНИЯ МЕТИЛЕН-БИС-АНТРАНИЛОВОЙ КИСЛОТЫ | 1982 |
|
RU1750166C |
СПОСОБ ПОЛУЧЕНИЯ ГИДРОХЛОРИДА β -ДИЭТИЛАМИНОЭТИЛОВОГО ЭФИРА П-АМИНОБЕНЗОЙНОЙ КИСЛОТЫ | 1994 |
|
RU2083557C1 |
СПОСОБ ОЧИСТКИ ТРИС- β -ХЛОРПРОПИЛФОСФАТА | 1992 |
|
RU2037497C1 |
СПОСОБ ПОЛУЧЕНИЯ ИНГИБИТОРА ОТЛОЖЕНИЙ МИНЕРАЛЬНЫХ СОЛЕЙ | 1987 |
|
RU2107688C1 |
СПОСОБ ПОЛУЧЕНИЯ ЭФИРОВ АМИНОБЕНЗОЙНЫХ КИСЛОТ | 1995 |
|
RU2096403C1 |
СПОСОБ ПОЛУЧЕНИЯ ИЗОМЕРОВ ФТАЛЕВЫХ КИСЛОТ С ВЫСОКОЙ СТЕПЕНЬЮ ЧИСТОТЫ | 1993 |
|
RU2047595C1 |
Использованием для получения пинаколина. Сущность изобретения: способ получения пинаколина включает обработку 2,3-диметилбутадиен-1,3 3 - 35%-ным раствором серной кислоты или 10 - 40%-ным раствором метилфосфоновой, или 30 - 60%-ным раствором дифосфоновой кислоты, или 5 - 30%-ной кислой соли шелочного металла этой кислоты или смеси указанных кислот и их солей при температуре 70 - 170oC с последующим выделением целебного продукта. 2 табл.
Способ получения пинаколина, включающий обработку непредельного соединения в присутствии кислоты, отличающийся тем, что, с целью повышения выхода целевого продукта, 2,3-диметилбутадиен-1,3 обрабатывают 3 - 35%-ным раствором серной кислоты или 10 - 40%-ным раствором фосфорной кислоты, или 20 - 50%-ным раствором метилфосфоновой или 30 - 60%-ным раствором дифосфоновой кислоты, или 5 - 30 мас.% кислой соли щелочного металла этой кислоты или смеси указанных кислот и их солей при 70 - 170oС с последующим выделением целевого продукта.
УСТРОЙСТВО ДЛЯ МОНТАЖНОЙ ПАЙКИ ЭЛЕМЕНТОВ НА ПЕЧАТНОЙ ПЛАТЕ | 1993 |
|
RU2082571C1 |
Авторы
Даты
1998-03-27—Публикация
1985-10-22—Подача