СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ ТРУБ Российский патент 2004 года по МПК C21D9/08 C21D8/10 

Описание патента на изобретение RU2230802C1

Изобретение относится к металлургии стали и может быть использовано при изготовлении высокопрочных, стойких к сульфидному растрескиванию, хладостойких и коррозионностойких труб нефтяного сортамент из углеродистых и легированных с сильными карбидообразующими элементами (Cr, Mo, V, Nb и др.) сталей.

Известен способ термической обработки из малоуглеродистых марганцовистых сталей, заключающийся в том, что трубы с температуры конца прокатки охлаждают на воздухе, нагревают до температур 760-790°С, охлаждают в воде, затем осуществляют дополнительный нагрев до 670-700°С с охлаждением на воздухе [пат. РФ №2048542, М. кл. С 21 D 8/10, опубл. 20.11.95].

Способ используют при термической обработке труб нефтяного сортамента с пределом текучести 379-552 Н/м2, стойких к сульфидному растрескиванию под напряжением в средах, содержащих природный и бактериальный сероводород.

Однако, как показала практика, этот способ не пригоден для изготовления труб более высоких групп прочности, при производстве которых используют стали, легированные хромом, молибденом, ванадием. В связи с повышением устойчивости стали к отпуску дополнительный нагрев после закалки до температур 670-700°С без выдержки не позволяет получать требуемое разупрочнение и, соответственно, необходимую стойкость к сульфидному растрескиванию.

Наиболее близким по технической сущности и достигаемому результату к предлагаемому является способ термической обработки труб из низколегированных сталей, содержащих хром, молибден и ванадий, включающий нагрев до 760-810°С, охлаждение в воде, повторный нагрев до 630-720°С, выдержку и охлаждение на воздухе [пат. РФ №2112050, М. кл. С 21 D 8/10, опубл. 27.05.98].

Данный способ позволяет получать трубы групп прочности L-80 по API 5 СТ и Кс, Ее по ТУ 14-161-173, стойкие к сульфидному растрескиванию.

Недостатком этого способа является применение нагрева в межкритическом интервале температур (760-810°С), то есть в структуре закаленных труб присутствует 10-20% доэвтектоидного феррита, что недопустимо для труб групп прочности L-80, С-90 и Т-95, выпускаемых по API 5 СТ. Повышение температуры нагрева выше Ас3 при охлаждении в воде приводит к появлению в трубах из легированных сталей торцевых закалочных трещин и недопустимому короблению концов. Для сталей, легированных хромом, молибденом и ванадием, обычно применяется закалка в техническом масле или специальных закалочных средах, использование которых невозможно при непрерывно-последовательном спрейерном охлаждении. Кроме того, применение двухкратного отпуска (без выдержки и с выдержкой) нетехнологично, так как нарушается непрерывность процесса и существенно повышаются энергозатраты и стоимость продукции.

Задачей изобретения является разработка способа термической обработки, который путем управления процессом охлаждения стабильно обеспечивает требуемую мартенситную прокаливаемость в трубах как из углеродистых, так и из легированных марок стали и исключает вероятность трещинообразования.

Поставленная задача достигается тем, что в способе термической обработки труб, включающем нагрев, выдержку, охлаждение водой в спрейере и отпуск с выдержкой, нагрев ведут до температуры Ас3 +20-50°С, а охлаждение осуществляют в три стадии, на первой из которых трубы охлаждают со средней скоростью 60-85°С/с в течение 2-4 с; на второй - со средней скоростью 35-50°С/с в течение 6-8 с; на третьей - со средней скоростью 10-15°С/с в течение 10-13 с до температуры 100-150°С, а отпуск осуществляют с выдержкой не менее 30 мин.

Данный способ дает возможность использовать для изготовления труб нефтяного сортамента с пределом текучести 379-965 Н/м2 различные по химическому составу стали. Повышение температуры нагрева до Ас3 +20-50°С по сравнению с прототипом вызвано необходимостью полной аустенитизации в связи с недопустимостью в структуре высокопрочных труб, труб, стойких к сульфидному растрескиванию, хладостойких и коррозионностойких доэвтектоидного феррита.

Режим охлаждения по предлагаемому способу предусматривает для обеспечения требуемой прокаливаемости наиболее высокую скорость охлаждения в верхнем интервале (от температуры аустенитизации до бейнитной области превращения) и замедленную скорость в нижнем интервале температур металла. Это вызвано тем, что мартенситная точка большинства используемых при изготовлении этих труб сталей лежит в области температур ~350-200°С и в случае охлаждения с высокой скоростью в нижнем интервале температур происходит суммирование термических и структурных напряжений, приводящих к появлению закалочных трещин или сильному короблению (продольному искривлению и овализации концов). Параметры охлаждения по способу выбраны с учетом требований к структуре и свойствам высокопрочных, стойких к сульфидному растрескиванию, хладостойких и коррозионностойких труб и являются универсальными для применяемых при их изготовлении углеродистых и легированных сильными карбидообразующими элементами (Cr, Mo, V, Nb и др.) марок стали.

Первая стадии охлаждения происходит со скоростью 60-85°С/с в течение 2-4 с. При этом на сталях типа 20,20Ф обладающих низкой прокаливаемостью на мартенсит, обеспечивается подавление диффузионного феррито-перлитного распада. Снижение интенсивности охлаждения в этом интервале приводит к появлению недопустимых для хладостойких, коррозионностойких и стойких к сульфидному растрескиванию труб структурных составляющих - доэвтектоидного феррита и перлита, а увеличение скорости охлаждения выше 60-85°С/с резко повышает расход воды.

На второй стадии охлаждения со скоростью 35-50°С/с в течение 6-8 с обеспечивается практически полное подавление бейнитного распада, что позволяет получать мартенситную прокаливаемость, требуемую стандартами для высокопрочных, стойких к сульфидному растрескиванию, хладостойких и коррозионностойких труб, изготавливаемых из сталей типа 26ХМФА и 30ХМА.

Третья стадия охлаждения осуществляется в области мартенситного превращения со скоростью 10-15°С/с, меньшей, чем в техническом масле, в течение 10-13 с. При такой скорости охлаждения и, так как температура охлаждаемых труб не опускается ниже 100-150°С, уровень остаточных напряжений значительно меньше, чем при традиционном охлаждении водой до цеховой температуры (по прототипу).

Таким образом, при предлагаемых в способе условиях охлаждения обеспечивается необходимая прокаливаемость применяемых для изготовления высокопрочных, стойких к сульфидному растрескиванию, хладостойких и коррозионностойких труб марок стали, а вероятность коробления и растрескивания труб сведена к минимуму, т.е. обеспечивается решение поставленной в изобретении задачи.

При отпуске с выдержкой не менее 30 мин достигается оптимальная мелкодисперсная однородная структура, состоящая из мелких субзерен и равномерно распределенных сфероидизированных карбидов. Такая структура гарантированно обеспечивает получение в трубах требуемого уровня механических и коррозионных свойств.

Предлагаемый способ термической обработки труб осуществляется следующим образом.

Трубы из углеродистых и легированных марок стали нагревают в печи с шагающим балками до температур в интервале 820-920°С в зависимости от значений Ас3 конкретной стали. Точность нагрева металла в печи составляет ±7°С. Охлаждение труб осуществляют в спрейере, состоящем из четырех регулируемых секций. Для предотвращения коробления и исключения попадания воды внутрь трубы при охлаждении изменяется направление подачи струй воды при прохождении труб в трех первых секциях. Скорость охлаждения по длине спрейера регулируется изменением расхода воды по секциям. Это позволяет проводить охлаждение с температуры аустенитизации в течение 3 с со средней скоростью до 85°С/с, затем в течение 6 с со скоростью до 50°С/с, а затем в течение 12 с со скоростью до 15°С/с до температуры 120-140°С. Далее трубы поступают в печь с шагающими балками для отпуска с выдержкой в течение 40 мин при температуре 680-720°С. Точность нагрева металла составляет ±5°С.

Способ был опробован в промышленных условиях ОАО “Синарский трубный завод” и дал следующие результаты, приведенные в таблице. Из данных таблицы видны высокие результаты, относящиеся к задаче изобретения по сравнению с прототипом. Способ позволяет получать после одинарного отпуска с выдержкой высокопрочные, стойкие к сульфидному растрескиванию, хладостойкие и коррозионностойкие трубы (более высоких групп прочности L-80, С-90, Т-95, Р 110), чем после двухкратного отпуска по прототипу, кроме того, предлагаемый регулируемый режим охлаждения водой, гарантирует отсутствие закалочных трещин и недопустимого коробления.

Таким образом, решена задача создания способа термической обработки, позволяющего использовать углеродистые и легированные стали для изготовления высокопрочных, стойких к сульфидному растрескиванию, хладостойких и коррозионностойких труб, в которых стабильно обеспечивается требуемая мартенситная прокаливаемость, высокий уровень свойств и исключается вероятность трещинообразования и недопустимого коробления.

Похожие патенты RU2230802C1

название год авторы номер документа
Высокопрочная коррозионно-стойкая бесшовная труба из нефтепромыслового сортамента и способ ее получения 2019
  • Александров Сергей Владимирович
  • Лаев Константин Анатольевич
  • Щербаков Игорь Викторович
  • Девятерикова Наталья Анатольевна
  • Ошурков Георгий Леонидович
  • Харлашин Александр Николаевич
RU2719212C1
СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ ИЗДЕЛИЙ ИЗ КОМПЛЕКСНО-ЛЕГИРОВАННОЙ СТАЛИ 2013
  • Пономарев Николай Георгиевич
  • Грехов Александр Игоревич
  • Овчинников Дмитрий Владимирович
  • Тихонцева Надежда Тахировна
  • Жукова Светлана Юльевна
  • Суворов Александр Вадимович
  • Софрыгина Ольга Андреевна
  • Мануйлова Ирина Ивановна
RU2564196C2
СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ ТРУБ 1996
  • Прохоров Н.Н.
  • Галиченко Е.Н.
  • Медведев А.П.
  • Тетюева Т.В.
  • Лаптев В.А.
  • Дегай А.С.
  • Григорьев А.Г.
  • Давыдов В.Я.
  • Меньшикова Р.Н.
  • Меньшикова Р.Н.
  • Губин Ю.Г.
  • Катюшкин В.Г.
RU2096495C1
СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ БЕСШОВНЫХ КОРРОЗИОННОСТОЙКИХ ТРУБ НЕФТЯНОГО СОРТАМЕНТА ИЗ СТАЛИ МАРТЕНСИТНОГО КЛАССА 2021
  • Трутнев Николай Владимирович
  • Тумашев Сергей Владимирович
  • Лоханов Дмитрий Валерьевич
  • Буняшин Михаил Васильевич
  • Мякотина Ирина Васильевна
  • Чубуков Михаил Юрьевич
  • Коновалов Сергей Сергеевич
  • Битюков Сергей Михайлович
RU2788887C2
СПОСОБ ИЗГОТОВЛЕНИЯ ТРУБ ИЗ УГЛЕРОДИСТОЙ СТАЛИ 1998
  • Брижан А.И.
  • Грехов А.И.
  • Жукова С.Ю.
  • Кривошеева А.А.
  • Марченко Л.Г.
  • Медведев А.П.
  • Мухин М.Ю.
  • Поповцев Ю.А.
  • Тетюева Т.В.
  • Усов В.А.
RU2132396C1
СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ ОТЛИВКИ ИЗ ВЫСОКОПРОЧНОЙ ИЗНОСОСТОЙКОЙ СТАЛИ (ВАРИАНТЫ) 2019
  • Дегтярев Александр Федорович
  • Скоробогатых Владимир Николаевич
  • Нуралиев Фейзулла Алибала Оглы
  • Щепкин Иван Александрович
  • Кафтанников Александр Сергеевич
  • Муханов Евгений Львович
RU2750299C2
Способ получения низкоуглеродистой мартенситной стали 2020
  • Лаптев Сергей Константинович
  • Шацов Александр Аронович
  • Гребеньков Сергей Константинович
  • Жаренников Алексей Владимирович
RU2760140C1
СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ ТРУБ 1997
  • Брижан А.И.
  • Грехов А.И.
  • Жукова С.Ю.
  • Марченко Л.Г.
  • Поповцев Ю.А.
  • Шепелев А.В.
  • Тетюева Т.В.
  • Прохоров Н.Н.
  • Галиченко Е.Н.
  • Медведев А.П.
RU2112050C1
СПОСОБ ПРОИЗВОДСТВА ЛИСТОВОГО ПРОКАТА 2010
  • Энзель Сергей Эдуардович
  • Якушев Евгений Валерьевич
  • Зырянов Владислав Викторович
  • Иоффе Андрей Владиславович
  • Суворов Павел Вячеславович
  • Тетюева Тамара Викторовна
  • Юдин Павел Евгеньевич
RU2430978C1
СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ СВАРНЫХ ТРУБ 2011
  • Белов Евгений Викторович
  • Ефимов Иван Васильевич
  • Пейганович Надежда Валерьевна
  • Силин Денис Анатольевич
RU2484149C1

Иллюстрации к изобретению RU 2 230 802 C1

Реферат патента 2004 года СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ ТРУБ

Изобретение относится к изготовлению высокопрочных, стойких к сульфидному растрескиванию, хладостойких и коррозионностойких труб нефтяного сортамента из углеродистых и легированных сильными карбидообразующими элементами (Cr, Мо, V, Nb и др.) сталей. Способ термической обработки труб включает нагрев до температуры Ас3+20-50°С, охлаждение водой в спрейере в три стадии, на первой из которых трубы охлаждают со средней скоростью 60-85°С/с в течение 2-4 с; второй - со средней скоростью 35-50°С/с в течение 6-8 с, на третьей - со средней скоростью 10-15°С/с в течение 10-13 с до температуры 100-150°С, а отпуск осуществляют с выдержкой не менее 30 мин. Изобретение обеспечивает требуемую мартенситную прокаливаемость в трубах из углеродистых и легированных марок стали и исключает вероятность коробления и трещинообразования. 1 табл.

Формула изобретения RU 2 230 802 C1

Способ термической обработки труб, включающий нагрев, охлаждение водой в спрейере и отпуск с выдержкой, отличающийся тем, что нагрев ведут до температур Ас3+20÷50°С, а охлаждение осуществляют в три стадии, на первой из которых трубы охлаждают со средней скоростью 60-85°С/с в течение 2-4 с, второй - со средней скоростью 35-50°С/с в течение 6-8 с, на третьей - со средней скоростью 10-15°С/с в течение 10-13 с до температуры 100-150°С, а отпуск осуществляют с выдержкой не менее 30 мин.

Документы, цитированные в отчете о поиске Патент 2004 года RU2230802C1

СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ ТРУБ 1997
  • Брижан А.И.
  • Грехов А.И.
  • Жукова С.Ю.
  • Марченко Л.Г.
  • Поповцев Ю.А.
  • Шепелев А.В.
  • Тетюева Т.В.
  • Прохоров Н.Н.
  • Галиченко Е.Н.
  • Медведев А.П.
RU2112050C1
СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ ТРУБ 1996
  • Прохоров Н.Н.
  • Галиченко Е.Н.
  • Медведев А.П.
  • Тетюева Т.В.
  • Лаптев В.А.
  • Дегай А.С.
  • Григорьев А.Г.
  • Давыдов В.Я.
  • Меньшикова Р.Н.
  • Меньшикова Р.Н.
  • Губин Ю.Г.
  • Катюшкин В.Г.
RU2096495C1
Способ термической обработки холодно-и теплодеформированных труб 1989
  • Стогний Лора Дмитриевна
  • Литинский Юрий Данилович
  • Карпов Николай Алексеевич
  • Гринберг Валерий Зельманович
  • Ламин Александр Борисович
  • Газман Соломон Мордухович
  • Персанова Валентина Григорьевна
  • Гринберг Жанна Семеновна
  • Маркевич Виталий Михайлович
SU1717652A1
СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ ТРУБ ИЗ МАЛОУГЛЕРОДИСТЫХ МАРГАНЦОВИСТЫХ СТАЛЕЙ 1994
  • Артамошкин Сергей Владимирович[Ru]
  • Тетюева Тамара Викторовна[Ru]
  • Брижан Анатолий Илларионович[Ru]
  • Марченко Леонид Григорьевич[Ru]
  • Поповцев Юрий Александрович[Ru]
  • Жукова Светлана Юльевна[Ru]
  • Кривошеева Антонина Андреевна[Ua]
  • Кузьмичев Евгений Михайлович[Ua]
  • Усов Владимир Антонович[Ru]
RU2048542C1

RU 2 230 802 C1

Авторы

Брижан А.И.

Бодров Ю.В.

Грехов А.И.

Горожанин П.Ю.

Жукова С.Ю.

Мурзин В.Н.

Рыбинский Н.Ф.

Лефлер М.Н.

Пышминцев И.Ю.

Кривошеева Антонина Андреевна

Крылатков С.И.

Даты

2004-06-20Публикация

2003-07-23Подача