Изобретение относится к металлургии стали и может быть использовано при изготовлении нефтегазопроводных труб из малоуглеродистой стали, стойких к коррозионному растрескиванию в средах, содержащих сероводород и СО2.
Известен способ термической обработки труб из малоуглеродистой стали, при котором изделия нагревают до 900oС и охлаждают на воздухе (см. технологические инструкции ТИ 162-ТР. ТБ-04 и ТИ 162-ТР. ТБ-09 АО "Северский трубный завод"). Недостатком данного способа является то, что он не обеспечивает требуемого уровня эксплуатационных свойств труб, особенно хладостойкости и стойкости к сульфидному растрескиванию.
Известен также способ термической обработки труб, заключающийся в том, что изделия с прокатного нагрева охлаждают по выходу из последней клети стана с температурой 830-870oС путем воздействия на их наружную поверхность водой в течение 0,15-0,30 с с интенсивностью 6,0-7,0 л/с на каждый миллиметр толщины стенки [1] Способ используют при термической обработке труб нефтяного сортамента для обеспечения требуемого уровня механических свойств, однако в связи с низкой стойкостью к сульфидному растрескиванию трубы нельзя применять при эксплуатации месторождений даже с низким содержанием сероводорода.
Наиболее близким по технической сущности и достигаемому результату к предлагаемому является способ термической обработки труб, включающий охлаждение на воздухе с температуры конца прокатки, нагрев до 760-790oС с охлаждением в воде до цеховой температуры и дополнительный нагрев до 670-700oС с охлаждением на воздухе [2] Однако, как показала практика, для труб, изготавливаемых из литой заготовки на установках с пильгерстаном, когда горячая деформация не устраняет исходную пильгерстаном, когда горячая деформация не устраняет исходную дендритную структуру и ликвационную неоднородность, такой способ термической обработки не позволяет повысить значения ударной вязкости и коррозионную стойкость до требуемых величин.
Целью изобретения является повышение хладостойкости и коррозионной стойкости толстостенных труб, получаемых из литой заготовки.
Поставленная цель достигается тем, что после горячей деформации труб осуществляется циклическая обработка, состоящая из первого нагрева до температуры 1080-1120oС с охлаждением в воде, второго нагрева до температуры 880-920oС с охлаждением в воде, третьего нагрева до температуры 740-760o С с охлаждением в воде и дополнительного нагрева до температуры 680-700oС с охлаждением на воздухе.
При первом нагреве при 1080-1120oС происходит гомогенизация аустенита, снижение степени ликвационной неоднородности, частичное растворение неметаллических включений и изменение их формы на более округлую. После охлаждения в воде структура состоит из небольшого количества доэвтектоидного феррита, мартенсита и бейнита.
При втором нагреве при 880-920oС зародыши аустенита будут распределяться равномерно, поскольку первые порции аустенита образуются в местах с более высокой концентрацией углерода на границах мартенситных кристаллов и вокруг бейнитных карбидов. В итоге возникает однородное мелкое аустенитное зерно, которое после охлаждения в воде обеспечивает дисперсную феррито-бейнитно-мартенситную структуру. Образование феррита идет на границах мелкозернистого аустенита, из-за быстрого охлаждения и возникновения упругих напряжений при образовании бейнитных и мартенситных кристаллов в этом феррите будет повышенное количество дислокаций. При третьем нагреве в межкритическую область при 740-780oС, феррит приобретает полигонизованную структуру, поскольку не подвергается фазовой перекристаллизации. Этот нагрев дополнительно измельчает аустенитное зерно.
При дополнительном нагреве при 680-700oС происходит расход мартенсита и формируется окончательная структура полигонизованного феррита с дисперсными коагулированными карбидами.
В результате термоциклирования происходит гомогенизация аустенита, частичная коагуляция неметаллических включений, снижение концентрации вредных примесей на границах аустанитных зерен и образование однородной структуры полигонизованного феррита с дисперсными карбидами, такая структура наиболее предпочтительна в трубах из стали 20, работающих в средах, содержащих сероводород и СО2.
Предлагаемый способ термической обработки труб осуществляется следующим образом. Трубы-заготовки нагревают под заключительную деформацию до 850-920oС, по выходу из последней клети стана трубы имеют температуру 800-850oС. С этой температуры трубы охлаждают на воздухе до цеховой температуры. Затем осуществляют первый нагрев до 1080-1120oС с охлаждением в воде, второй нагрев до 880-920oС с охлаждением в воде и третий нагрев до 740-760oС с охлаждением в воде. После охлаждения в воде ведут дополнительный нагрев до 680-700oС с охлаждением на воздухе.
Способ был опробован в промышленных условиях на трубах размером 273х18 мм полученных из литой заготовки АО "Северский трубный завод" и дал следующие результаты, приведенные в таблице.
Как видно из таблицы, получены высокие результаты, относящиеся к задаче изобретения. Так по сравнению с прототипом значения ударной вязкости при температуре минус 40oС на продольных образцах возросли в среднем на 3300% а коррозионная стойкость к питтинговой коррозии на 64,1%
Таким образом, решена задача по повышению хладостойкости и коррозионной стойкости труб, получаемых из литой заготовки.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПРОИЗВОДСТВА БЕСШОВНЫХ ТРУБ ИЗ МАЛОУГЛЕРОДИСТОЙ СТАЛИ | 1997 |
|
RU2112049C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ ТРУБ | 1997 |
|
RU2110588C1 |
СПОСОБ ПРОИЗВОДСТВА БЕСШОВНЫХ ТРУБ ИЗ МАЛОУГЛЕРОДИСТОЙ СТАЛИ | 2001 |
|
RU2210604C2 |
СПОСОБ ИЗГОТОВЛЕНИЯ ТРУБ ИЗ УГЛЕРОДИСТОЙ СТАЛИ | 1998 |
|
RU2132396C1 |
СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ ТРУБ | 1996 |
|
RU2096495C1 |
СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ ТРУБ | 1996 |
|
RU2085596C1 |
СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ ТРУБ ИЗ МАЛОУГЛЕРОДИСТЫХ МАРГАНЦОВИСТЫХ СТАЛЕЙ | 1994 |
|
RU2048542C1 |
СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ ТРУБ | 2003 |
|
RU2230802C1 |
СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ ТРУБ | 1997 |
|
RU2112050C1 |
СПОСОБ ПРОИЗВОДСТВА БРОНЕКАБЕЛЬНОЙ ЛЕНТЫ | 2001 |
|
RU2203966C2 |
Использование: изобретение относится к металлургии стали и может быть использовано при изготовлении нефте-газопроводных труб из малоуглеродистой стали, стойких к коррозионному растрескиванию в средах, содержащих сероводород. Технический результат - повышение коррозионной стойкости труб нефтяного сортамента из малоуглеродистой стали, эксплуатируемых в средах, содержащих помимо сероводорода СО2. Сущность изобретения трубы с температуры конца прокатки охлаждают на воздухе, нагревают до 1080-1120oС, охлаждают в воде, повторно нагревают до 880-920oС, охлаждают в воде и окончательно нагревают до 740-760oС, охлаждают в воде. Проводят отпуск при 680-700oС с охлаждением на воздухе. 1 табл.
Способ термической обработки труб, включающий охлаждение на воздухе с температуры конца прокатки, многократный нагрев с охлаждением в воде и отпуск, отличающийся тем, что осуществляют трехкратный нагрев сначала до 1080 - 1120oС, затем до 880 920oС и окончательный до 740 760oС, а отпуск проводят при 680 700oС с охлаждением на воздухе.
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ ТРУБ ИЗ МАЛОУГЛЕРОДИСТЫХ МАРГАНЦОВИСТЫХ СТАЛЕЙ | 1994 |
|
RU2048542C1 |
Выбрасывающий ячеистый аппарат для рядовых сеялок | 1922 |
|
SU21A1 |
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
Способ термической обработки литых сталей | 1981 |
|
SU1076468A1 |
Выбрасывающий ячеистый аппарат для рядовых сеялок | 1922 |
|
SU21A1 |
Авторы
Даты
1997-08-10—Публикация
1996-06-10—Подача