Изобретение относится к органической химии, а именно к способам получения циклических углеводородов, в частности к способу получения пара-ксилола путем каталитической конверсии смеси толуола и синтез-газа.
Известен способ получения смесей ксилолов из толуола и синтез-газа. Смесь толуола и синтез-газа превращают в ксилолы на катализаторе, состоящем из цеолита КХ (или К-13Х) и хромита цинка (Zn 0311 или Zn 0312). Температура процесса: составляет 250-650oC, давление от атмосферного до 1050 атм [1]. Недостатками этого способа являются низкие селективность и выход п-ксилола.
Наиболее близким к предлагаемому является способ получения п-ксилола из алкилароматических углеводородов путем их алкилирования смесью H2, CO(CO2) на каталитических системах, состоящих из металлоксидного компонента (оксиды меди, цинка и алюминия или хрома) и алюмосиликата в кристаллической или аморфной форме [2] . Согласно выбранному прототипу процесс проводят при температуре 200-400oC, давлении 1-200 атм и мольных отношениях H2CO и CO2/CO, равных 1-5 и 0,01-1 соответственно.
Основным недостатком данного способа является низкая селективность катализатора по образующемуся п-ксилолу при невысокой конверсии толуола и CO (CO2).
Задачей настоящего изобретения является увеличение селективности катализатора по п-ксилолу.
Поставленная задача решается двумя вариантами способа:
- для получения п-ксилола из толуола и синтез-газа используют катализатор, состоящий из цеолита типа ZSM-5, модифицированного соединениями кремния и магния, и металлоксидного компонента, содержащего, мас.%: Zn0 65-70; Cr2O3 29-34; W2O3 1 при массовом соотношении цеолита и металлоксидного компонента в катализаторе, равном 30-70 и 70-30 соответственно, и процесс проводят при температуре 380-440oC, весовой скорости подачи толуола 1-3 ч-1 и объемной скорости подачи синтез-газа 1000-10000 ч-1.
Задача решается также тем, что цеолит содержит соединения кремния и магния в количестве, мас.%: 1-3 и 4-15 соответственно.
Вторым вариантом способа является то, что
- для получения п-ксилола из толуола и синтез-газа используют катализатор, состоящий из цеолита типа ZSM-5, модифицированного соединениями кремния и магния, и металлоксидного компонента, содержащего, мас.%: ZnO 65-70; Cr2O3 29-34; W2O5 1, при массовом соотношении цеолита и металлоксидного компонента в катализаторе, равном 30-70 и 70-30 соответственно, и процесс проводят при температуре 380-440oC, весовой скорости подачи толуола 1-3 ч-1 и объемной скорости подачи синтез-газа 1000-10000 ч-1 в проточно-циркуляционной системе с охлаждением газового потока после реактора, отделением сконденсировавшихся продуктов реакции и подачей части газового потока на рецикл.
Задача решается также тем, что цеолит содержит соединения кремния и магния в количестве, мас.%: 1-3 и 4-15 соответственно.
Отличительными признаками изобретения являются:
а) в способе используют катализатор, в состав которого входит в качестве кристаллического алюмосиликата высококремнеземистый цеолит типа ZSM-5, модифицированный соединениями кремния и магния,
б) в качестве металлоксидного компонента используют композицию оксидов металлов, содержащую, мас.%: Zn0 65-70; Cr2O3 29-34; W2O5 1,
в) процесс проводят в проточно-циркуляционной системе с охлаждением газового потока после реактора, отделением сконденсировавшихся продуктов реакции и подачей части газового потока на рецикл,
г) массовое соотношение цеолита и металлоксидного компонента в катализаторе равно 30 - 70 и 70 - 30 соответственно,
д) процесс проводят при температуре 380-440oC, весовой скорости подачи толуола 1-3 ч-1 и объемной скорости подачи синтез-газа 1000-10000 ч-1.
е) цеолит содержит соединения кремния и магния в количестве, мас.%: 1-3 и 4-15 соответственно.
Использование металлоксидного компонента катализатора позволяет синтезировать метанол из газовых смесей, содержащих CO, CO2 и H2, который на цеолитном компоненте катализатора алкилирует ароматическое кольцо толуола с образованием ксилолов. Применение в качестве цеолитного компонента высококремнеземистого цеолита типа ZSM-5, имеющего канальную структуру кристаллов, способствует образованию в каналах цеолита параизомера ксилолов, а модификация внешней поверхности кристаллов цеолита соединениями кремния и магния препятствует протеканию реакций изомеризации п-ксилола в мета- и ортоизомеры. Заявляемые в изобретении количества введенных в цеолит кремния и магния подобраны экспериментально. Использование в процессе в качестве катализатора только металлоксидного компонента или цеолита типа ZSM-5, модифицированного кремнием и магнием, не позволяет достичь изложенных в изобретении результатов. Именно комбинация в катализаторе металлоксидного компонента и цеолита типа ZSM-5, модифицированного кремнием и магнием, ускоряет протекание химических превращений толуола и синтез-газа в направлении образования п-ксилола. Дезактивация активных центров коксообразования на внешней поверхности цеолита путем его модификации соединениями кремния и магния, а также использование в катализаторе металлоксидного компонента, активного в реакциях гидрирования ненасыщенных соединений - предшественников кокса, в сочетании с повышенным давлением и восстановительной реакционной средой способствуют высокой стабильности работы используемых в изобретении катализаторов. Варьирование экспериментальным путем массового соотношения между цеолитом и металлоксидной композицией от 30/70 до 70/30 позволяет изменять время контакта исходных реагентов с составными частями катализатора и влиять на селективность процесса. Все использованные в изобретении катализаторы приготовлены по известным методикам.
Выбор условий проведения процесса получения п-ксилола из толуола и синтез-газа обусловлен следующими факторами. Нижний предел температуры - 380oC является пределом минимальной каталитической активности используемых катализаторов в превращении сырья, верхняя граница температуры (440oC) связана с ухудшением термической стабильности металлоксидного компонента катализатора. Повышенное давление необходимо для более глубокого превращения синтез-газа и толуола, а расходные показатели по толуолу и синтез-газу определяются активностью используемого катализатора. Состав исходного синтез-газа может меняться в широких пределах - от 50 до 80 мол.% H2, остальное - CO и/или CO2.
В другом варианте для повышения селективности катализатора используют циркуляцию газового потока через реактор с удалением образовавшихся продуктов из циркуляционного контура. Эффект воздействия принудительной циркуляции с охлаждением газового потока после реактора на протекание реакций заключается в том, что при каждом рецикле газового потока через реактор создается малое время контакта исходного сырья с катализатором, что способствует образованию первичных продуктов алкилирования, а именно п-ксилола, и исключает протекание вторичных превращений образовавшегося п-ксилола по реакциям изомеризации, алкилирования и коксообразования. Охлаждение циркулирующего газа и отделение сконденсировавшихся продуктов от газа в сепараторе препятствует дальнейшему контакту образовавшегося п-ксилола с катализатором. Вследствие того, что исходный толуол обладает значительно более высокой летучестью по сравнению с п-ксилолом, экспериментально подбираются такие условия конденсации продуктов, при которых часть толуола остается в циркуляционном газе и поступает в реактор для повторного алкилирования в п-ксилол. Поступающий на алкилирование исходный синтез-газ смешивается с циркуляционным газом и на металлоксидном компоненте превращается в метанол, который далее на модифицированном цеолите алкилирует толуол с образованием п-ксилола. Низкая степень превращения исходного синтез-газа за каждый проход через реактор обеспечивает в слое катализатора высокое мольное отношение толуола к образовавшемуся метанолу, что способствует протеканию только реакций моноалкилирования толуола. В результате многократного прохождения синтез-газа через реактор достигается высокая конверсия CO в целевой продукт, а удаление из рецикла образующейся в процессе воды подавляет побочное превращение CO в CO2 по реакции водяного газа. Неконденсируемые продукты превращения синтез-газа и толуола постоянно удаляются из циркуляционного контура пропорционально их образованию.
В итоге применение метода циркуляции с выделением жидких продуктов реакции позволяет увеличить не только селективность катализатора по первичным продуктам (в данном случае п-ксилолу), но и повысить выход п-ксилола на поданный толуол.
Основными продуктами алкилирования толуола синтез-газом в заявляемом способе являются ксилолы с высоким содержанием в них пара-изомера, побочными углеводородными продуктами являются парафины C1-C4, этилтолуолы, триметилбензолы и этилксилолы. Тетраметилбензолы и другие алкилароматические углеводороды практически отсутствуют в продуктах реакции. Побочными продуктами превращения синтез-газа являются в основном H2O и немного CO2, количество которых пропорционально количеству превращенного синтез-газа. Содержание метанола и диметилового эфира в продуктах реакции составляет менее 1 мас.% от суммы всех образованных продуктов.
Промышленная применимость заявляемого способа иллюстрируется примерами 2-12, пример 1 - прототип. В примерах 2-12 процесс осуществляли в проточно-циркуляционной системе с охлаждением газового потока после реактора, отделением сконденсировавшихся продуктов реакции и подачей части газового потока на рецикл, в примерах 1 (прототип), 13 и 14 контактирование катализатора с исходной смесью толуола и синтез-газа проводилось в проточных условиях без циркуляции газового потока.
Пример 1 (прототип). Металлоксидный компонент, содержащий 41,5 мас.% меди, 14,1 мас. % цинка и 5,0 мас.% алюминия и пропитанный борной кислотой, смешали с порошком алюмосиликата в объемном соотношении 1:1. Полученный комбинированный катализатор обработали газообразной смесью, содержащей 2% H2 и 98% N2, при температуре 220oC в течений 16 ч и использовали для конверсии толуола и синтез-газа (68 мол. % H2, 26 мол.% CO и 6 мол.% CO2). Условия проведения и основные показатели процесса представлены в таблице.
Пример 2. Смесь толуола и синтез-газа (66 мол.% H2, 33 мол.% CO и 1 мол. % CH4) контактирует с катализатором, состоящим из цеолита HZSM-5 (мольное отношение SiO2:Al2O3=70), обработанного растворами тетраэтоксисилана и ацетата магния, и металлоксидного компонента, содержащего оксиды металлов в массовом соотношении ZnO : Cr2O3 : W2O5 = 70 : 29 : 1. Содержание введенных в цеолит элементов составило 2 мас.% Si и 10 мас.% Mg. Массовое соотношение в катализаторе (N 3) между металлоксидным компонентом и цеолитом равно 40/60. Условия проведения и основные показатели процесса представлены в таблице.
Пример 3. Смесь толуола и синтез-газа (66 мол.% H2, 33 мол.% CO и 1 мол. % CH4 контактирует с катализатором, состоящим из цеолита HZSM-5 (мольное отношение SiO2: Al2O3= 70), обработанного растворами тетраэтоксисилана и ацетата магния, и металлоксидного компонента, содержащего оксиды металлов в массовом соотношении Zn0 : Cr2O3 : W2O5 = 70 : 29 : 1. Содержание введенных в цеолит элементов составило 1 мас.% Si и 4 мас.% Mg. Массовое соотношение в катализаторе (N 1) между металлоксидным компонентом и цеолитом равно 70/30. Условия проведения и основные показатели процесса представлены в таблице.
Примеры 4-7. Смесь толуола и синтез-газа (66 мол.% H2, 33 мол.% CO и 1 мол. % CH4) контактирует с катализатором, состоящим из цеолита HZSM-5 (мольное отношение SiO2:Al2O3=70), обработанного растворами тетраэтоксисилана и ацетата магния, и металлоксидного компонента, содержащего оксиды металлов в массовом соотношении Zn0 : Cr2O3 : W2O5 = 65 : 34 : 1. Содержание введенных в цеолит элементов составило 2 мас.% Si и 10 мас.% Mg. Массовое соотношение в катализаторе (N 4) между металлоксидным компонентом и цеолитом равно 30/70. Условия проведения и основные показатели процесса представлены в таблице.
Пример 8. Смесь толуола и синтез-газа (66 мол.% H2, 33 мол.% CO и 1 мол. % CH4) контактирует с катализатором, состоящим из цеолита HZSM-5 (мольное соотношение SiO2: Al2O3= 70), обработанного растворами тетраэтоксисилана и ацетата магния, и металлоксидного компонента, содержащего оксиды металлов в массовом соотношении ZnO : Cr2O3 : W2O5 = 65 : 34 : 1. Содержание введенных в цеолит элементов составило 2 мас.% Si и 10 мас.% Mg. Массовое соотношение в катализаторе (N 3) между металлоксидным компонентом и цеолитом равно 40/60. Условия проведения и основные показатели процесса представлены в таблице.
Примеры 9-10. Смесь толуола и синтез-газа (66 мол.% H2, 33 мол.% CO и 1 мол. % CH4) контактирует с катализатором, состоящим из цеолита HZSM-5 (мольное соотношение SiO2:Al2O3=70), обработанного растворами тетраэтоксисилана и ацетата магния, и металлоксидного компонента, содержащего оксиды металлов в массовом соотношении ZnO : Cr2O3 : W2O5 = 66 : 33 : 1. Содержание введенных в цеолит элементов составило 2 мас.% Si и 10 мас.% Mg. Массовое соотношение в катализаторе (N 2) между металлоксидным компонентом и цеолитом равно 50/50. Условия проведения и основные показатели процесса представлены в таблице.
Примеры 11-12. Смесь толуола и синтез-газа (66 мол.% H2, 33 мол.% CO и 1 мол. % CH4) контактирует с катализатором, состоящим из цеолита HZSM-5 (мольное соотношение SiO2:Al2O3=70), обработанного растворами тетраэтоксисилана и ацетата магния, и металлоксидного компонента, содержащего оксиды металлов в массовом соотношении ZnO : Cr2O3 : W2O5 = 66 : 33 : 1. Содержание введенных в цеолит элементов составило 2 мас.% Si и 10 мас.% Mg. Массовое соотношение в катализаторе (N 4) между металлоксидным компонентом и цеолитом равно 30/70. Условия проведения и основные показатели процесса представлены в таблице.
Пример 13. Смесь толуола и синтез-газа (66 мол.% H2, 33 мол.% CO и 1 мол. % CH4) контактирует с катализатором, состоящим из цеолита HZSM-5 (мольное соотношение SiO2:Al2O3=70), обработанного растворами тетраэтоксисилана и ацетата магния, и металлоксидного компонента, содержащего оксиды металлов в массовом соотношении ZnO : Cr2O3 : W2O5 = 65 : 34 : 1. Содержание введенных в цеолит элементов составило 2 мас.% Si и 10 мас.% Mg. Массовое соотношение в катализаторе (N 4) между металлоксидным компонентом и цеолитом равно 30/70. Условия проведения и основные показатели процесса представлены в таблице.
Пример 14. Смесь толуола и синтез-газа (66 мол.% H2, 33 мол.% CO и 1 мол. % CH4) контактирует с катализатором, состоящим из цеолита HZSM-5 (мольное соотношение SiO2:Al2O3=70), обработанного растворами тетраэтоксисилана и ацетата магния, и металлоксидного компонента, содержащего оксиды металлов в массовом соотношении ZnO : Cr12O3 : W2O5 = 65 : 34 : 1. Содержание введенных в цеолит элементов составило 2 мас.% Si и 10 мас.% Mg. Массовое соотношение в катализаторе (N 1) между металлоксидным компонентом и цеолитом равно 70/30. Условия проведения и основные показатели процесса представлены в таблице.
Приведенные в изобретении примеры 2-14 показывают, что поставленная задача - увеличение селективности катализатора по п-ксилолу решается с помощью отличительных признаков, изложенных в обоих вариантах формулы изобретения.
Изобретение относится к органической химии, а именно к способам получения циклических углеводородов, в частности к способу получения пара-ксилола путем каталитической конверсии смеси толуола и синтез-газа. Задачей настоящего изобретения является увеличение селективности катализатора по п-ксилолу. Поставленная задача решается двумя вариантами способа. Первый вариант - для получения п-ксилола из толуола и синтез-газа используют катализатор, состоящий из цеолита типа ZSM-5, модифицированного соединениями кремния и магния, и металлоксидного компонента, содержащего мас.%: ZnO 65 - 70; Cr2O3 29 - 34; W2O5 1 при массовом соотношении цеолита и металлоксидного компонента в катализаторе, равном 30 - 70 и 70 - 30 соответственно, и процесс проводят при температуре 380 - 440oC, весовой скорости подачи толуола 1 - 3 ч-1 и объемной скорости подачи синтез-газа 1000 - 10000 ч-1. Задача решается также тем, что цеолит содержит соединения кремния и магния в количестве, мас.%: 1 - 3 и 4 - 15 соответственно. Вторым вариантом способа является то, что для получения п-ксилола из толуола и синтез-газа используют катализатор, состоящий из цеолита типа ZSM-5, модифицированного соединениями кремния и магния, и металлоксидного компонента, содержащего, мас.%: ZnO 65 - 70; Cr2O3 29 - 34; W2O5 1 при массовом соотношении цеолита и металлоксидного компонента в катализаторе, равном 30 - 70 и 70 - 30 соответственно, и процесс проводят при температуре 380 - 440oC, весовой скорости подачи толуола 1 - 3 ч-1 и объемной скорости подачи синтез-газа 1000 - 10000 ч-1 в проточно-циркуляционной системе с охлаждением газового потока после реактора, отделением сконденсировавшихся продуктов реакции и подачей части газового потока на рецикл. Задача решается также тем, что цеолит содержит соединения кремния и магния в количестве, мас.%: 1 - 3 и 4 - 15 соответственно. 2 с. и 2 з.п. ф-лы, 1 табл.
ZnO - 65 - 70
Cr2O3 - 29 - 34
W2O5 - 1
при массовом соотношении цеолита и металлоксидного компонента в катализаторе, равном 30 - 70 и 70 - 30 соответственно, процесс проводят при температуре 380 - 440oC, весовой скорости подачи толуола 1 - 3 ч-1 и объемной скорости подачи синтез-газа 1000 - 10000 ч-1.
ZnO - 65 - 70
Cr2O3 - 29 - 34
W2O5 - 1
при массовом соотношении цеолита и металлоксидного компонента в катализаторе, равном 30 - 70 и 70 - 30 соответственно, процесс проводят при температуре 380 - 440oC, весовой скорости подачи толуола 1 - 3 ч-1 и объемной скорости подачи синтез-газа 1000 - 10000 ч-1 в проточно-циркуляционной системе с охлаждением газового потока после реактора, отделением сконденсировавшихся продуктов реакции и подачей части газового потока на рецикл.
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
US, патент, 4086289, C 07 C 3/52, 1978 | |||
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
US, патент, 4487984, C 07 C 1/00, 1984. |
Авторы
Даты
1998-07-20—Публикация
1996-12-16—Подача