СПОСОБ ИНДИВИДУАЛЬНОЙ КОРРЕКТИРОВКИ РАСХОДА ФЛЮСА В АГЛОМЕРАЦИОННУЮ ШИХТУ Российский патент 1998 года по МПК C22B1/16 

Описание патента на изобретение RU2116361C1

Предложение относится к области автоматического управления в агломерационном производстве.

Известен [1] способ оперативной корректировки расхода известняка при дозировании агломерационной шихты, состоящий в использовании номограмм, построенных с учетом возможных для конкретного предприятия изменения состава шихты и свойств компонентов. С помощью монограмм возможно приблизительное графическое решение уравнений для определения расходов компонентов шихты.

Недостатком данного способа является неудобство пользования и низкая точность.

Известен [2] способ корректировки расхода дозируемого в шихту известняка в зависимости от отклонения основности шихты от заданного значения, исключающий необходимость полного перерасчета шихты. По данному способу величина изменения расхода известняка (регулирующее воздействие) принимается равной

где Qк.з, Qи.з - текущие заданные значения расходов концентрата и известняка; Rш - изменение основности шихты; Δ Qк - управляемое изменение расхода концентрата, равное

ΔqFe.ш - отклонение содержания железа в шихте; K1 - K4 - коэффициенты, определяющие связь между показателями качества и регулирующими воздействиями и устанавливаемые опытным путем.

Недостатком указанного способа является использование коэффициентов, для определения которых необходимо проводить специальные исследования.

Известен [3] способ регулирования основности аглошихты, состоящий в том, что усредненные значения содержаний CaO и SiO2, необходимые для формирования управляющего воздействия, определяются по формуле:
X = X0 + 0,5(r - X0), (3)
где X0 и r - данные предшествующей и текущей пробы.

По результатам расчета определяют усредненное значение основности и его отклонение от заданной, которое после преобразования по определенному закону регулирования служит управляющим воздействием.

Недостатком данного способа является отсутствие однозначного соответствия между величиной управляющего воздействия и отклонением стабилизируемого параметра.

Прототипом предлагаемого способа является способ стабилизации основности шихты при изменениях химического состава ее компонентов [4]. Способ состоит в периодическом контроле химического состава шихтовых компонентов, в частности содержания в них CaO и SiO2 определении основности шихты и ее отклонения от заданного значения, перерасчете требуемого расхода известняка, если отклонение основности превышает 0,07 относительных единиц, по формуле:
,
где 100 - базовая масса сухого концентрата, равная 100 кГ;
Mб.с - базовая масса сухого бентонита, кГ;
Mи.с.кор - откорректированная базовая масса сухого известняка, кГ;
содержания SiO2 в концентрате, бентоните и известняке, %;
qCaO.к, qCaO.б, qCaO.и - содержания CaO в концентрате, бентоните и известняке, %;
Rшз - заданная основность шихты.

Результат перерасчета используется в виде управляющего воздействия для коррекции задания регулятору в системе автоматической стабилизации соотношения известняк/концентрат.

Формула (4) в общем виде выражается известным уравнением

где Mi.c, , qCaO.i - параметры i-того компонента;
- сумма, включающая параметры всех компонентов кроме известняка.

При многокомпонентном дозировании агломерационной шихты частый отбор проб и анализ химического состава всех компонентов затруднительны, что не обеспечивает возможность оперативной корректировки расхода известняка.

Целью данного предложения является повышение точности и оперативности стабилизации основности производимого агломерата.

Указанная цель достигается тем, что расход флюса в шихту оперативно корректируют по результатам контроля химического и физического состава шихты и флюса, устанавливая расход флюса равным:

при условии

Qф, Qф.кор - текущее и откорректированное значения расхода влажного флюса;
Qш - текущее значение расхода влажной шихты;
Kв.ш, Kв.ф - коэффициенты потерь массы шихты и массы флюса от испарения содержащейся в них влаги;
, qCaO.ш - содержания SiO2 и CaO в шихте;
qCaO.ф - содержания SiO2 и CaO во флюсе;
RA.з - заданная основность агломерата;
ΔfFe.A.пр = qFe.A.з - qFe.A.пр - отклонение прогнозируемого содержания железа в агломерате qFe.A.прот заданного значения qFe.A.з;
ΔqFe.A.доп - допустимое отклонение содержания железа в агломерате от заданного значения;

- прогнозируемое содержание железа в агломерате.

Шихта, предназначенная для производства агломерата, составляется на основании полного расчета, исходными параметрами для которого являются химсостав шихтовых компонентов, требуемые содержания железа и основность агломерата. По результатам расчета устанавливаются необходимые базовые массы всех компонентов и поддерживаются соответствующие их расходы.

Однако в связи с часто возникающими возмущениями, в основном из-за нестабильности химсостава компонентов, основность производимого агломерата может отклоняться от заданного значения.

Известный способ управления в таких случаях предусматривает выполнение полного перерасчета шихты и установление новых значений соотношений расходов компонентов. Такой способ требует достаточно частого отбора проб и химанализа всех компонентов, что затруднительно при дозировании многокомпонентной шихты. Кроме того, оперативные изменения расходов всех компонентов, влияя на физические свойства шихты (гранулометрический состав, влажность, комкуемость), отрицательно сказываются на процессах смешивания и окомкования шихты.

Практически, при дозировании агломерационной шихты основность агломерата оперативно стабилизируют путем индивидуальной корректировки содержания в шихте флюса (известняка). Известные способы [1-4], предусматривающие индивидуально корректировку, не обеспечивают достаточно высокого качества (точности и оперативности) стабилизации основности агломерата.

Сущность предлагаемого способа состоит в следующем.

Основность агломерата RA определяется отношением взвешенный по массам содержаний CaO и SiO2 в сухих компонентах шихты:

где Mi.с= MiKв.i - масса i-того сухого компонента;
Mi - масса i-того влажного компонента;
Kв.i - коэффициент, учитывающий потерю массы i-тым компонентом от испарения содержащейся в нем влаги;
qCaO.i, - содержания CaO и SiO2 в i-том компоненте;
n - количество компонентов в шихте.

Вычленив в уравнении (6) флюсовый компонент, запишем его в виде:

где Mф.с, qCaO.ф - параметры флюса;
- параметры остальных компонентов, кроме флюса.

Так как при откорректированной массе флюса Mф.с.кор- обеспечивается заданная основность агломерата RA.з, аналогичное уравнение запишем как:

Решая совместно уравнения (7) и (8) с учетом равенства

получаем, что для установления заданной основности агломерата масса флюса должна составлять:

Преобразуем полученное уравнение на основании следующих соотношений:

где Mш.с - масса сухой шихты;
qCaO.ш, - содержания CaO и SiO2в шихте.

В результате получаем, что

Переходя к расходам влажных материалов, получаем, что

где
Qф, Qф.кор - текущее и откорректированное значение расхода влажного флюса;
Qш - расход влажной шихты;
Kв.ш = Mш.с/Mш, Kв.ф = Mф.с/MФ - коэффициенты потерь массы шихты и массы флюса от испарения содержащейся в них влаги;
Mш, Mф - массы влажных шихты и флюса.

Уравнение (11) является алгоритмом определения величины необходимой индивидуальной корректировки расхода флюса в шихту по результатам анализа химического и вещественного состава шихты и флюса. При установлении расхода флюса, равного Qф.кор, обеспечивается заданная основность агломерата.

Важной характеристикой агломерата, обеспечивающей ровный ход доменного процесса, является стабильность содержания в нем железа. В связи с тем, что при индивидуальной корректировке расхода флюса происходит определенное нарушение заданных полным расчетом соотношений расходов компонентов шихты, это приводит, в том числе, и к отклонению содержания железа в агломерате от заданного значения. Указанное отклонение не должно превышать допустимых пределов. Поэтому в предлагаемом способе перед выполнением индивидуальной корректировки расхода флюса предусматривается проверка прогнозируемого содержания железа в агломерате.

Прогнозируемое содержание железа в агломерате определяется по формуле:

где
qFe.ш, qFe.ф - содержания железа в шихте и во флюсе;
Kп.ш, Kп.ф - коэффициенты потерь масс шихты и флюса при их прокаливании;
Kмех - коэффициент механических потерь масс шихты и флюса.

Индивидуальная корректировка расхода флюса осуществляется, если qFe.A.пр не выходит за минимальный и максимальный допустимые пределы содержания железа в агломерате.


При осуществлении предлагаемого способа производят следующие действия.

1) Непрерывно контролируют расходы дозируемых шихты Qш и флюса Qф.

2) Периодически (например, один раз в час) контролируют показатели химсостава шихты (qCaO.ш, , qFe.ш) и флюса (qCaO.ф, и проверочно (например, один раз в сутки) параметры Kв.ш, Kп.ш, Kмех, Kв.ф, Kп.ф.

3) Определяют прогнозируемую основность агломерата по формуле.


4) Определяют отклонение прогнозируемой основности агломерата от заданного значения:
ΔRA.пр≤ RA.з-RA.пр (15)
5) Сравнивают указанное отклонение с его допустимым значением по условию

6) При отклонении большем допустимого определяют необходимое откорректированное значение расхода флюса по уравнению (11).

7) Определяют прогнозируемое содержание железа в агломерате при откорректированном расходе флюса по уравнению (12).

8) Определяют отклонение прогнозируемого содержания железа в агломерате от заданного значения:
ΔqFe.A.пр= qFe.A.з-qFe.A.пр (17)
9) Сравнивают указанное отклонение с его допустимым значением по условию

10) При отклонении меньшем допустимого устанавливают и далее поддерживают откорректированное по уравнению (11) значение расхода флюса, дозируемого в шихту.

Рассмотрим процесс дозирования при следующих исходных параметрах: Qш = 1231,3 т/ч; Qф= 126,7 т/ч; Kв.ш = 0,9296; Kв.ф= 0,988; qCaO.ш = 11,28%; qCaO.ф = 53,50%; Kп.ш = 0,874; Kп.ф = 0,576; qFe.ш = 45,43%; qFe.ф = 0; Kмех.ш = Kмех.ф = 1; RА.з = 1,30; ΔRA.доп= ±0,05; ; qFe.А.з = 52,50%; ΔqFe.A.доп= ±0,60%.
При указанных параметрах прогнозируемая основность агломерата по уравнению (14) составляет:

Предположим, что очередной химанализ шихты показал, что содержание SiO2 в шихте стало равным а содержание железа qFe.ш = 45,66%. При этом прогнозируемая основность агломерата и ее отклонение от заданной по уравнениям (14) и (15) равны:

Для индивидуальной корректировки расход флюса в шихту по уравнению (11) должен быть установлен равным:

Прогнозируемое содержание железа в агломерате при такой корректировке составляет (12):

следовательно условие (18) удовлетворяется.

После выполнения индивидуальной корректировки расхода флюса основность агломерата будет равна:

Пример
Предлагаемое техническое решение предусматривается использовать в разрабатываемой АСУ ТП шихтоподготовки агломерационной фабрики металлургического комбината НЛМК.

Структурно АСУ ТП является двухуровневой иерархической системой с управляющим вычислительным комплексом УВК на нижнем уровне и центральным вычислительным комплексом ЦВК на верхнем уровне. Функции контроля и дозирования компонентов шихты выполняются УВК, а вычислительные и прогнозирующие функции - ЦВК.

Для реализации предлагаемого способа в ЦВК по периодически вводимым результатам химического анализа шихты и флюса определяются прогнозируемая основность агломерата. При значительном отклонении ее от заданного значения вычисляется откорректированное значение расхода флюса, необходимое для восстановления основности на заданном значении. Одновременно определяется прогнозируемое значение содержания железа в агломерате при откорректированном расходе флюса. Если его отклонение от заданного значения не превосходит допустимого, то откорректированное значение расхода флюса поступает из ЦВК в УВК в качестве нового задания для контура стабилизации расхода флюса. УВК осуществляет управление дозированием флюса в шихту в соответствии с откорректированным заданием, чем обеспечивает заданную основность агломерата.

В известных способах индивидуальная корректировка расхода флюса осуществляется на основании контролируемых химического и вещественного составов всех дозируемых в шихту компонентов. К числу недостатков этих способов, кроме отмеченной ранее их трудоемкости при большом числе компонентов, можно отнести и то, что в них не учитываются возможные погрешности дозирования компонентов. Предлагаемый способ основан на результатах контроля характеристик уже отдозированной шихты, поступающей на агломашины, следовательно базируется на более представительной информации и обеспечивает более высокую точность.

Предлагаемый способ обеспечивает достаточную оперативность при стабилизации основности агломерата и не допускает изменения содержания железа в агломерате сверх допустимых пределов.

Существенными отличительными признаками способа являются:
1) корректировка расхода флюса по показателям химического и вещественного составов шихты и флюса;
2) установление расхода флюса, равного вычисленному по уравнению (11);
3) выполнение корректировки расхода флюса при условии недопущения изменения содержания железа в агломерате сверх допустимых пределов.

В качестве базового образца может служить способ индивидуальной корректировки расхода известняка, используемый на аглофабрике Южного горнообогатительного комбината (ЮГОКа) для стабилизации основности агломерата [5].

По данному способу контролируют содержание SiO в шихте и при его изменении более чем на + 0,37% изменяют расход известняка относительно расхода железосодержащей части шихты на:

где - изменение содержания SiO2 в шихте.

Изменение расхода флюса по данному способу производится на величину приближенно определяемую по упрощенному уравнению (19). Для условий аглофабрики ЮГОКа это оказывается возможным благодаря относительно малому числу компонентов, дозируемых в шихту (4 компонента), и наличию только одного флюсующего компонента (известняк). При большем числе дозируемых компонентов, содержащих CaO и SiO2, корректировка расхода флюса по данному способу привела бы к значительным погрешностям.

Предлагаемый способ по сравнению с известными: менее трудоемок; более оперативен; обеспечивает более высокую точность стабилизации основности агломерата; не допускает чрезмерных колебаний содержания железа в агломерате.

Источники информации
1. Губанов В.И., Цейтлин А.М. Справочник рабочего-агломератчика. - М.: Металлургия, 1987 - 207 с. (стр. 35).

2. Денисенко В. М. , Хайзенс В.Д. Критерии оптимизации и алгоритмы управления процессом подготовки агломерационной шихты. -: Механизация и автоматизация производства, N 10, 1976, (стр. 35-37).

3. Патент Японии N 49-29401, кл. 10 A 14 (C 29 B 1/16). Регулирование основности аглошихты. (опубл. 03.08.74 г.).

4. Автоматизированные системы управления подготовкой металлургического сырья и доменным переделом. Под ред. К.А.Шумилова. М.: Металлургия, 1979, 184 с. (стр. 109). прототип.

5. Окускование железорудного сырья на аглофабрике ЮГОКа. Технологическая инструкция. Кривой Рог, 1988 г., стр. 11. Базовый образец.

Похожие патенты RU2116361C1

название год авторы номер документа
СПОСОБ СТАБИЛИЗАЦИИ ОСНОВНОСТИ АГЛОМЕРАТА 1997
  • Зевин С.Л.(Ru)
  • Науменко В.В.(Ru)
  • Ищенко Альберт Дмитриевич
  • Ищенко Светлана Альбертовна
RU2117056C1
СПОСОБ УПРАВЛЕНИЯ ПРОЦЕССОМ СПЕКАНИЯ ШИХТЫ НА АГЛОМАШИНЕ 1992
  • Зевин Семен Лазаревич[Ru]
  • Греков Василий Васильевич[Ru]
  • Ищенко Альберт Дмитриевич[Ua]
  • Ищенко Светлана Альбертовна[Ru]
RU2037540C1
СПОСОБ ПРОИЗВОДСТВА ВЫСОКОЗАКИСНОГО АГЛОМЕРАТА 1998
  • Греков В.В.
  • Зевин С.Л.
  • Истомин В.С.
  • Коршиков Г.В.
  • Коршикова Е.Г.
  • Кузнецов А.С.
  • Науменко В.В.
  • Хайков М.А.
RU2157854C2
СПОСОБ ПРОИЗВОДСТВА ОФЛЮСОВАННОГО АГЛОМЕРАТА 1997
  • Зевин С.Л.
  • Греков В.В.
  • Коршиков Г.В.
  • Кузнецов А.С.
  • Кукарцев В.М.
  • Панченко В.Ф.
  • Чернобривец Б.Ф.
RU2110589C1
СПОСОБ ПРОИЗВОДСТВА ОФЛЮСОВАННОГО ЖЕЛЕЗОРУДНОГО АГЛОМЕРАТА 1999
  • Панишев Н.В.
  • Тахаутдинов Р.С.
  • Краснов С.Г.
  • Антонюк В.В.
  • Гибадуллин М.Ф.
  • Некеров В.Д.
  • Нечепуренко О.Н.
  • Верблюденко А.П.
  • Терентьев В.Л.
RU2149907C1
СПОСОБ ВЕДЕНИЯ ДОМЕННОЙ ПЛАВКИ 1999
  • Франценюк И.В.
  • Коршиков Г.В.
  • Греков В.В.
  • Григорьев В.Н.
  • Зевин С.Л.
  • Иноземцев Н.С.
  • Капорулин В.В.
  • Коршикова Е.Г.
  • Яриков И.С.
RU2156306C1
СПОСОБ ВЕДЕНИЯ ДОМЕННОЙ ПЛАВКИ 2002
  • Коршиков Г.В.
  • Иноземцев Н.С.
  • Яриков И.С.
  • Ляпин С.С.
  • Григорьев В.Н.
  • Емельянов В.Л.
  • Коршикова Е.Г.
RU2240351C2
АГЛОМЕРАЦИОННЫЙ ФЛЮС, ШИХТА И СПОСОБ ЕГО ПРОИЗВОДСТВА 2010
  • Кобелев Владимир Андреевич
  • Чернавин Александр Юрьевич
  • Филатов Сергей Васильевич
  • Филиппов Валентин Васильевич
  • Сухарев Анатолий Григорьевич
RU2465350C2
СПОСОБ ПРОИЗВОДСТВА ПРОМЫВОЧНОГО АГЛОМЕРАТА 2004
  • Терентьев В.Л.
  • Савинов В.Ю.
  • Кузнецов В.Г.
  • Вдовин К.Н.
  • Ким Т.Ф.
  • Терентьев А.В.
RU2254384C1
СПОСОБ ПРОИЗВОДСТВА ПРОМЫВОЧНОГО АГЛОМЕРАТА 1999
  • Греков В.В.
  • Зевин С.Л.
  • Иноземцев Н.С.
  • Коршиков Г.В.
  • Коршикова Е.Г.
  • Кузнецов А.С.
  • Науменко В.В.
  • Семенов А.К.
  • Хайков М.А.
RU2158316C1

Реферат патента 1998 года СПОСОБ ИНДИВИДУАЛЬНОЙ КОРРЕКТИРОВКИ РАСХОДА ФЛЮСА В АГЛОМЕРАЦИОННУЮ ШИХТУ

Использование: изобретение относится к области подготовки сырья к доменному переделу. Сущность: для повышения точности и оперативности стабилизации основности производимого агломерата расход флюса в шихту оперативно корректируют по результатам контроля химического и физического состава шихты и флюса, устанавливая расход флюса равным: при условии где Qф, Qф.коп - текущее и откорректированное значения расхода влажного флюса; т/г; Qш - текущее значение расхода влажной шихты; Kв.ш., Kв.ф. - коэффициенты потерь массы шихты и массы флюса от испарения содержащейся в них влаги; qСаОш, qСаОф - содержания SiO2 и СaO в шихте и во флюсе, %; RA.з. - заданная основность агломерата; ΔqFe.А.пр = qFe.АЗ - qFe.П.Пр прогнозируемого содержания железа в агломерате qFe.А.Пр=qFe.АЗ - отклонение прогнозируемого содержания железа в агломерате qFe.А.пр от заданного значения qFe, %; ΔqFe.А.доп - допустимое отклонение содержания железа в агломерате от заданного значения: прогнозируемое содержание железа в агломерате; Kмех - коэффициент, учитывающий механические потери массы шихты; qFe.ш, qFe.ф - содержания железа в шихте и во флюсе, %, Kпш и Kпф - коэффициенты потерь масс шихты и флюса при прокаливании.

Формула изобретения RU 2 116 361 C1

Способ индивидуальной корректировки расхода флюса в агломерационную шихту, включающий непрерывный контроль расходов и дозирование компонентов шихты, оперативный периодический контроль химических и физических показателей шихты и флюса и определение прогнозируемой основности агломерата, отличающийся тем, что при отклонении прогнозируемой основности от заданного значения расход флюса в шихту устанавливают по следующей зависимости:

при условии
где Qф, Qф.кор - текущее и откорректированное значения расхода влажного флюса, т/ч;
Qш - текущее значение расхода влажной шихты, т/ч;
Кв.ш, Кв.ф - коэффициенты потерь массы шихты и массы флюса от испарения содержащейся в них влаги;
qCaO.ш, qCaO.ф - содержания SiO2 и CaO в шихте и во флюсе, %;
PА.з - заданная основность агломерата;
ΔqFe.А.пр= qFe.А.з-qFe.А.пр - отклонение прогнозируемого содержания железа в агломерате qFe.А.пр от заданного значения qFe.А.з, %;
ΔqFe.А.доп - допустимое отклонение содержания железа в агломерате от заданного значения,
при этом прогнозируемое содержание железа в агломерате определяют по следующей зависимости:

где Кмех - коэффициент, учитывающий механические потери массы шихты;
qFe.ш, qFe.ф - содержания железа в шихте и флюсе, %;
Кп.ш, Кп.ф - коэффициенты потерь масс шихты и флюса при прокаливании.

Документы, цитированные в отчете о поиске Патент 1998 года RU2116361C1

Губанов В.И
и др
Справочник рабочего-агломератчика - М.: Металлургия, 1 987, с.35
Механизация и автоматизация производства
Планшайба для точной расточки лекал и выработок 1922
  • Кушников Н.В.
SU1976A1
JP, патент, 49-29401, кл
Машина для добывания торфа и т.п. 1922
  • Панкратов(-А?) В.И.
  • Панкратов(-А?) И.И.
  • Панкратов(-А?) И.С.
SU22A1
Автоматизированные системы управления подготовкой металлургического сырья и доменным переделом / Под ред
К.А.Шумилова
- М: Металлургия, 1979, с.109
Окускование железорудног о сырья на аглофабрике ЮГОКа
Технологическая инструкция
- Кривой Рог, 19 88, с.11.

RU 2 116 361 C1

Авторы

Зевин С.Л.(Ru)

Науменко В.В.(Ru)

Ищенко Альберт Дмитриевич

Ищенко Светлана Альбертовна

Даты

1998-07-27Публикация

1997-02-28Подача