Изобретение касается нового способа получения циклических лактамов путем превращения нитрилов аминокарбоновых кислот с водой в присутствии катализаторов.
Из патента США 4 628 085 известно превращение нитрила 6-аминокапроновой кислоты с водой в газовой фазе на чистом силикагеле при 300oC. Продуктом этого протекающего количественно превращения является капролактам с начальной селективностью 95%, однако наблюдается быстрое падение производительности и селективности. Подобный способ описан в патенте США 4 625 023, согласно которому высокоразбавленный поток газа, состоящего из нитрила 6-аминокапроновой кислоты, динитрила адипиновой кислоты, аммиака, воды и газа-носителя, пропускают через слой катализатора, содержащего силикагель и смешанную окись меди(хрома), бария и титана. При степени превращения 85% капролактам получают с селективностью 91%. При этом также наблюдается быстрое дезактивирование катализатора.
Объектом патента США 2 301 964 является не каталитическое превращение нитрила 6-аминокапроновой кислоты в капролактам в водном растворе при 285oC. Выход составляет ниже 80%.
В патенте Франции 2 029 540 описан способ циклизации нитрила 6-аминокапроновой кислоты до капролактама с использованием катализаторов, причем в качестве катализаторов применяют металлический цинк или порошок меди, а также окиси, гидроокиси, галогениды, цианиды рубидия, свинца, ртути или элементов с порядковым номером 21-30 или 39-48. Указанные катализаторы используют в периодически работающем автоклаве в виде суспензии катализатора. Полное отделение катализатора от целевого продукта капролактама, однако, является проблематичным, поскольку капролактам может образовать соединение с растворимой частью применяемого металла или могут образоваться мелкие частицы при механическом перемешивании.
Задача данного изобретения поэтому заключалась в разработке способа получения циклического лактама путем превращения нитрилов аминокарбоновых кислот с водой в присутствии катализаторов, который не имеет вышеописанных недостатков, дает высокие выход и селективность и позволяет проводить процесс непрерывно.
Кроме того было необходимо расходовать как можно меньше катализатора. Необходимо было также преодолеть проблемы отделения, возникающие при проведении процессов в суспензии и вызываемые комплексообразованием растворимых компонентов катализаторов с компонентами реакционной смеси или тонкодисперсными частицами, которые образуются за счет больших механических нагрузок при перемешивании.
Эта задача согласно изобретению решается тем, что превращение осуществляют в жидкой фазе в реакторе с неподвижным слоем в присутствии гетерогенных катализаторов, которые в рабочих условиях процесса не содержат растворимых компонентов. Гетерогенные катализаторы расположены в неподвижном слое, через который непрерывно в форме орошения или путем подпитывания снизу пропускают реакционную смесь.
Предпочтительные варианты выполнения данного изобретения охарактеризованы в зависимых пунктах формулы изобретения.
Исходными соединениями в способе согласно изобретению являются нитрилы аминокарбоновых кислот, предпочтительно общей формулы I
в которой
n и m каждый могут иметь значения 0, 1, 2, 3, 4, 5, 6, 7, 8 и 9 и сумма (n+m) составляет минимум 3, предпочтительно минимум 4. R1 и R2 могут быть принципиально заместителями любого вида, причем обязательно должно быть обеспечено, чтобы заместители не оказывали влияния на целевую реакцию циклизации. Предпочтительно R и R независимо друг от друга означают группы C1-C6-алкила, или C5-C7-циклоалкила, или C1-C12-арила.
Особенно предпочтительными исходными соединениями являются нитрилы аминокарбоновых кислот общей формулы
H2N-(CH2)m-C≡N
причем
m имеет значения 3, 4, 5 или 6, в частности 5. Для m = 5 исходным соединением является нитрил 6-аминокапроновой кислоты.
Согласно способу по изобретению охарактеризованные выше нитрилы аминокарбоновых кислот превращают с водой в жидкой фазе с применением гетерогенных катализаторов в циклические лактамы. При применении нитрилов аминокарбоновых кислот формулы (I) получают соответствующие циклические лактамы формулы (II)
причем
n, m, R1 и R2 имеют указанные выше значения. Особенно предпочтительны такие лактамы, в которых n=0 и m имеет значения 4, 5 или 6, особенно 5 (в этом случае получают капролактам).
Превращение осуществляют в жидкой фазе при температурах в общем 140oC до 320oC, предпочтительно от 160oC до 280oC; давление составляет в общем случае от 1 до 250 бар, предпочтительно от 5 до 150 бар, причем следует обращать внимание на то, чтобы преобладающая часть реакционной смеси в рабочих условиях процесса была жидкой. Время реакции составляет от 1 до 120 минут, предпочтительно от 1 до 90 минут. В некоторых случаях времени реакции от 1 до 10 минут оказывается вполне достаточно.
На 1 моль нитрила аминокарбоновой кислоты используют в общем случае по крайней мере 0,01 моль, предпочтительно от 0,1 до 20 моль и особенно предпочтительно от 1 до 5 моль воды.
Преимущественно нитрил аминокарбоновой кислоты используют в виде раствора в воде с концентрацией от 1 до 50 мас.%, в частности от 5 до 50 мас.%, особенно предпочтительно от 5 до 30 мас.% (причем здесь растворитель является одновременно и компонентом реакции) или в виде раствора в смеси воды и растворителя. В качестве растворителя можно назвать спирты, такие как метанол, этанол, норм. и изопропанол, норм., изо- и трет-бутанол, и полиолы, такие как диэтиленгликоль и тетраэтиленгликоль, углеводороды, такие как петролейный эфир, бензол, толуол, ксилол, лактамы, такие как пирролидон или капролактам, или замещенные алкилом лактамы, такие как N-метилпирролидон, N-метилкапролактам или N-этилкапролактам, а также сложные эфиры карбоновых кислот, предпочтительно карбоновых кислот с 1 - 8 атомами углерода. В реакционной среде может также присутствовать аммиак. Разумеется, можно также применять смеси органических растворителей. В некоторых случаях особенно предпочтительны смеси из воды и спиртов в весовых соотношениях вода/спирт от 1:99 до 75:25, преимущественно от 1:99 до 50:50.
Точно также принципиально возможно применять нитрилы аминокарбоновых кислот в качестве компонентов реакции и одновременно как растворитель.
В качестве гетерогенных катализаторов можно, например, применять: кислоты, основные и амфотерные окислы элементов второй, третьей или четвертой основной группы Периодической системы элементов, такие как окись кальция, окись магния, окись бора, окись алюминия, окись олова или двуокись кремния в виде пирогенно полученной двуокиси кремния, в виде силикагеля, кизельгура, кварца или их смесей, а также окислы металлов второй и шестой побочных групп Периодической системы элементов, такие как окись титана, аморфная, как анатаз или рутил, окись циркония, окись цинка, окись марганца или их смеси. Применимы также окислы лантанидов и актиноидов, такие как окись церия, окись тория, окись празеодима, окись самария, смешанные окиси редкоземельных металлов или смеси указанных выше окислов. Кроме того катализаторами, например могут быть:
окись ванадия, окись ниобия, окись железа, окись хрома, окись молибдена, окись вольфрама или их смеси. Также можно применять смеси указанных окислов. Применимы также некоторые сульфиды, селениды и теллуриды, такие как теллурид цинка, селенид олова, сульфид молибдена, сульфид вольфрама, сульфид никеля, сульфид цинка и сульфид хрома.
В указанные выше соединения можно добавлять или они соотв. могут содержать соединения элементов первой и седьмой и седьмой основных групп Периодической системы.
Далее, можно назвать как пригодные катализаторы цеолиты, фосфаты и гетерополикислоты, а также кислые и щелочные ионообменники, такие как например Нафион.
При необходимости эти катализаторы могут содержать каждый раз до 50 вес. % меди, олова, цинка, марганца, железа, кобальта, никеля, рутения, палладия, платины, серебра или родия.
Применяемые катализаторы в зависимости от их состава могут быть полностью активными катализаторами или нанесенными катализаторами. Так например, двуокись титана можно применять в виде прутковых частиц или ее можно наносить в виде тонкого слоя на носитель. Для нанесения двуокиси титана на носитель, такой как силикагель, окись алюминия или окись циркония применимы все описанные в литературе методы. Например, можно тонкий слой двуокиси титана наносить путем гидролиза органического соединения титана, такого как изопропилат титана или бутилат титана, или путем гидролиза четыреххлористого титана или другого титан-содержащего неорганического соединения. Можно также применять золь, содержащий окись титана золь.
Преимуществом проведения процесса в неподвижном слое является, с одной стороны, возможность осуществить циклизацию простым образом непрерывно. С другой стороны, неожиданно достигаются высокие выходы и селективности, что позволяет малые времена реакции с очень высокой скоростью пропускания. Поскольку применяемые катализаторы по данным, которыми располагают в настоящее время, обладают высоким сроком службы, требуются экстремально малые количества катализатора. Проблемы отделения, возникающие при проведении процессов в суспензии и вызываемые комплексообразованием растворимых компонентов катализаторов с компонентами реакционной смеси или тонкодисперсными частицами, которые образуются за счет больших механических нагрузок при перемешивании, при проведении процесса в неподвижном слое полностью отпадают.
Примеры
В нагретый трубчатый реактор емкостью 25 мл (диаметр 6 мм; длина 800 мм), заполненный двуокисью титана (анатаз) в виде прутковых частиц размером 1,5 мм, подавали при 100 барах раствор нитрила 6-аминокапроновой кислоты (НАК) в воде и этаноле, взятые в весовых соотношениях, указанных в таблице. Поток продуктов, выходящий из реактора, анализировали газо-хроматографически и методом жидкостной хроматографии под высоким давлением (ЖХВД). Результаты также представлены в табл. 1
Сравнительный пример.
В условиях, аналогичных описанным в примере 1, осуществляли превращение в растворе, содержащем 10% нитрила аминокапроновой кислоты, 6,4% воды и 83,6% этанола без гетерогенного катализатора при 250oC и при времени реакцию 30 минут в полом трубчатом реакторе. Степень превращения составила 28% и селективность до капролактама - 74%.
Примеры 7 - 16.
Аналогично примерам 1 - 6 в таком же трубчатом реакторе осуществляли примеры 7 - 16, причем применяли 13,3 г двуокиси титана (табл. 2).
Примеры 17 - 22.
Аналогично примерами 1 - 6 в таком же трубчатом реакторе осуществляли примеры 17 - 22, причем применяли 20 г двуокиси титана (табл. 3)
Примеры 23 - 27.
Аналогично примерами 1 - 6 в таком же трубчатом реакторе осуществляли примеры 17 - 22, причем применяли различные катализаторы (табл. 4).
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОЛУЧЕНИЯ ЦИКЛИЧЕСКИХ ЛАКТАМОВ | 1994 |
|
RU2119912C1 |
СПОСОБ ПОЛУЧЕНИЯ КАПРОЛАКТАМА | 1995 |
|
RU2154058C2 |
СПОСОБ ПОЛУЧЕНИЯ ЦИКЛИЧЕСКИХ ЛАКТАМОВ, ПРЕИМУЩЕСТВЕННО КАПРОЛАКТАМА | 1995 |
|
RU2167861C2 |
СПОСОБ ПОЛУЧЕНИЯ КАПРОЛАКТАМА | 1995 |
|
RU2167862C2 |
СПОСОБ ОДНОВРЕМЕННОГО ПОЛУЧЕНИЯ КАПРОЛАКТАМА И ГЕКСАМЕТИЛЕНДИАМИНА | 1995 |
|
RU2153493C2 |
СПОСОБ ПОЛУЧЕНИЯ КАПРОЛАКТАМА | 1995 |
|
RU2153492C2 |
СПОСОБ ПОЛУЧЕНИЯ ПОЛИАМИДОВ ИЗ СОЕДИНЕНИЙ АМИНОКАРБОНОВОЙ КИСЛОТЫ | 1999 |
|
RU2215754C2 |
СПОСОБ ПОЛУЧЕНИЯ АЛИФАТИЧЕСКИХ АЛЬФА, ОМЕГА-АМИНОНИТРИЛОВ | 1995 |
|
RU2154630C2 |
СПОСОБ ПОЛУЧЕНИЯ 1,4-БУТАНДИОЛА | 1995 |
|
RU2147298C1 |
СПОСОБ ПОЛУЧЕНИЯ ПОЛИАМИДОВ | 1998 |
|
RU2221819C2 |
Циклические лактамы получают гидролизом нитрилов алифатических аминокарбоновых кислот в жидкой фазе в реакторе с неподвижным слоем гетерогенного катализатора, который не содержит компонентов, растворимых в рабочих условиях процесса. Используют раствор нитрила аминокарбоновой кислоты концентрацией 1-50 мас.% в воде или смеси воды с органическим растворителем. Капролактам получают из нитрил-6-аминокарбоновой кислоты. Облегчается отделение катализатора от жидких продуктов реакции, снижается расход катализатора, повышается выход конечного продукта. 4 з.п. ф-лы, 4 табл.
H2N___ (CH2)m-C≡N,
причем m равно 3, 4, 5 или 6.
US 4628085, 1986 | |||
СПОСОБ ПОЛУЧЕНИЯ |3-ЛАКТАМОВ | 0 |
|
SU371221A1 |
МЕХАНИЧЕСКАЯ ЗАБОЙКА | 2004 |
|
RU2301964C2 |
МАССАЖНОЕ УСТРОЙСТВО | 1990 |
|
RU2029540C1 |
Авторы
Даты
1998-10-20—Публикация
1994-11-15—Подача