ОГНЕУПОРНЫЙ МАТЕРИАЛ И СПОСОБ ЕГО ПОЛУЧЕНИЯ Российский патент 1998 года по МПК C04B35/66 C04B35/00 C04B35/10 C04B35/04 C04B35/52 C04B41/85 

Описание патента на изобретение RU2122535C1

Изобретение относится к производству огнеупорных материалов и, более конкретно, к высокоплотному огнеупорному материалу и способу его получения. Огнеупорные материалы находят широкое применение в промышленности на различных участках сталеплавильных производств, для футеровки химической аппаратуры, работающей при повышенных температурах в агрессивных средах.

Известны огнеупорные материалы на основе высокоглиноземистого плотного зернистого наполнителя - шамота и связки из огнеупорной глины в количестве 10-20% (Стрелов К.К., Мамыкин П.С. Технология огнеупоров. - М.: Металлургия, 1978, с.254). Материалы хотя и обладают хорошими физико-механическими характеристиками, однако они отличаются повышенной реакционной способностью по отношению к расплавленным металлам и шлакам, а также низкой термоустойчивостью, уменьшающей срок эксплуатации.

Одним из возможных решений по снижению реакционной способности огнеупорных материалов является введение в его состав углерода. Так в соответствии с патентной заявкой Японии N 3141157, кл. С 04 В 35/66, 17.06.91 огнеупор, предназначенный для футеровки доменной печи, содержит, мас.%: β-Al2O3 10-80; С 5-25 и SiC 15-85. К 100% этой смеси добавляют 2-10% спекающего агента и 1-5% антиоксиданта. Материал обладает низкой теплопроводностью, повышенной устойчивостью к щелочам, к окислению, абразивному износу и растрескиванию. Кроме того, огнеупор отличается повышенной смачиваемостью по отношению к средам, в которых он эксплуатируется, а также недостаточной термоустойчивостью из-за низкой теплопроводности.

В состав монолитного огнеупора, содержащего карбид циркония (Патентная заявка Японии N 01051381, кл. С 04 В 35/66, 27.02.89), для уменьшения смачиваемости вводят графит. Такой огнеупор отличается повышенной коррозионной стойкостью к расплавленному чугуну и сопротивлением растрескиванию при высоких температурах. Материал содержит, мас.%: порошок карбида циркония с размером частиц 44 мкм 3-30; Al2O3, MgO или СаО 40-80, карбид кремния и/или металлического кремния 2-5, алюмоксидное или фосфатное вяжущее 0,5-5, тонкоизмельченный графит остальное. Материал является относительно крупнопористым, что не позволяет уменьшить его смачиваемость расплавленными металлами и шлаками, и поэтому он достаточно реакционноспособен по отношению к ним. Кроме того, высокое содержание в огнеупоре карбида циркония, делающее его устойчивым к растрескиванию, значительно повышает его стоимость.

Известен способ получения огнеупорного материала, обладающего повышенной коррозионной устойчивостью к расплавленному чугуну, а также к эрозии и растрескиванию. Способ осуществляют путем добавления воды к сырью, приготовленному смешением тонкоизмельченного карбида кремния или металлического кремния, оксида алюминия, магния или кальция с графитом и алюмоксидным или фосфатным вяжущим. Полученную массу формуют известными методами, высушивают и получают вышеуказанный огнеупорный материал. Получаемый огнеупорный материал отличается недостаточно плотной структурой, довольно хорошо смачивается расплавленными металлами, вследствие чего проявляется относительно высокая реакционная способность по отношению к указанным металлам. Указанный способ не позволяет получить высокоплотный огнеупорный материал.

Таким образом, задачей изобретения являлось получение высокоплотного огнеупорного материала с повышенной термоустойчивостью и пониженными стоимостью и смачиваемостью по отношению к расплавленным металлам и шлакам, а также способа получения такого материала.

Задача решается за счет того, что огнеупорный материал, включающий оксиды алюминия и магния, карбид кремния и графит, дополнительно содержит оксиды кальция, циркония и кремния, по крайней мере один из оксидов титана, хрома и пироуглерод, при следующем соотношении компонентов, мас.ч.: оксид алюминия 0,0010-98,00; оксид магния 0,0010-98,00; оксид кальция 0,0010-40,00; оксид циркония 0,0001-60,00; оксид кремния 0,0010-25,00; оксид титана и/или хрома 0,0010-30,00; карбид кремния 0,0010-70,00; графит 1,0000-70,00; пироуглерод 0,0010-20,00.

Сформулированная задача решается также за счет того, что в способе получения огнеупорного материала, включающего оксиды алюминия и магния, карбид кремния и графит, включающем смешение компонентов смеси, формование полученной смеси, последующие сушку и обжиг формованной массы, в сырьевую смесь дополнительно вводят оксиды кальция, циркония и кремния, по крайней мере один из оксидов титана, хрома, обжиг формованной массы проводят в две стадии и его вторую стадию проводят в среде низших непредельных и/или предельных углеводородов с получением материала, включающего пироуглерод.

Огнеупорный материал вышеприведенного состава имеет низкие значения пористости поверхностного слоя и смачиваемости расплавленными металлами и шлаками, а также пониженную реакционную способность по отношению к средам, в которых он эксплуатируется. Материал относительно недорог и отличается повышенной термоустойчивостью.

Следующие примеры конкретного исполнения поясняют, но не ограничивают настоящее изобретение.

Примеры 1-6. Для приготовления огнеупорного материала смешивают оксиды алюминия, магния, кальция, циркония, кремния, а также оксид хрома или титана, графит и карбид кремния в соответствии с составами, приведенными в формуле изобретения. Массу формуют, полученные заготовки подвергают первичному обжигу при 2000 К. Обожженный огнеупорный материал подвергают повторному обжигу в среде метана при температуре 1700К. Конкретные составы огнеупоров после первой и второй стадий обжига приведены в табл.1.

Образцы огнеупорных материалов подвергают испытанию на шлако- и металлоустойчивость. Для определения металло- и шлакоустойчивости взвешенный образец исследуемого огнеупорного материала в виде цилиндра диаметром 50 мм выдерживают в течение 6 ч в расплавленном шлаке металлургического производства или металле при температуре 2000К, постоянно вращая со скоростью 60 об/мин. По истечении указанного времени образец вынимают из расплава шлака или металла и взвешивают. О металло- и шлакоустойчивости огнеупора судят по изменению массы образца в процессе испытаний. Чем меньше относительное изменение массы после испытания, тем более устойчив материал к соответствующим средам. Результаты испытаний образцов огнеупорных материалов на металло- шлакоустойчивость приведены в табл.2.

Как видно из данных табл.2, относительное изменение массы после испытаний на шлако- и металлоустойчивость материалов, полученных в соответствии с изобретением (колонки 3 и 5), во всех случаях значительно меньше, чем у контрольных образцов, содержащих те же компоненты, за исключением пироуглерода (колонки 2 и 4). При этом металло- и шлакоустойчивость повышается в среднем на 30-40%.

Это достигается за счет получения высокоплотной структуры огнеупора, следствием чего является пониженная смачиваемость, проявляющаяся в повышенной металло- и шлакоустойчивости. Такое изменение структуры материала при пироуплотнении приводит к понижению коэффициента линейного термического расширения примерно в 10 раз и, как следствие, к повышению его термоустойчивости.

Для осуществления настоящего изобретения используют обычное оборудование для формования исходной массы, последующей сушки и первой стадии обжига формованной заготовки. Получение пироуплотненных высокоплотных огнеупоров производят в промышленных электровакуумных печах.

Таким образом, для получения высокоплотных огнеупоров в соответствии с настоящим изобретением не требуются специальное оборудование и значительные капитальные затраты.

Похожие патенты RU2122535C1

название год авторы номер документа
ОГНЕУПОРНОЕ ИЗДЕЛИЕ 2002
  • Десай Приядарши
  • Ришо Жоан
  • Дебастиани Дуэн
RU2279948C2
ШИХТА ДЛЯ ИЗГОТОВЛЕНИЯ ОГНЕУПОРОВ 1989
  • Ксандопуло Г.И.
  • Исмаилов М.Б.
  • Сейдаев А.Р.
SU1716761A1
Способ получения периклазоуглеродистого бетона и периклазоуглеродистый бетон 2023
  • Земляной Кирилл Геннадьевич
  • Хафизова Алина Руслановна
  • Кащеев Иван Дмитриевич
RU2818338C1
Огнеупорная масса 1979
  • Савченко Юрий Иванович
  • Панфилов Рудольф Алексеевич
  • Алексеев Владимир Владимирович
  • Кортель Александр Августович
  • Симонов Константин Васильевич
SU872512A1
СПОСОБ ИЗГОТОВЛЕНИЯ ОГНЕУПОРОВ ДЛЯ РАЗЛИВКИ МЕТАЛЛА 1998
  • Жуковская А.Е.(Ru)
  • Козелкова И.И.(Ru)
  • Аксельрод Л.М.(Ru)
  • Тараканчиков Г.А.(Ru)
  • Ермолычев Д.А.(Ru)
  • Кабаргин С.Л.(Ru)
RU2155730C2
ОГНЕУПОРНАЯ БЕТОННАЯ СМЕСЬ 1999
  • Кабаргин С.Л.
  • Ермолычев Д.А.
  • Аксельрод Л.М.
  • Чуприна Н.А.
  • Егоров И.В.
RU2140407C1
СПОСОБ ИЗГОТОВЛЕНИЯ МОДИФИЦИРУЮЩЕЙ ДОБАВКИ 1998
  • Можжерин В.А.
  • Сакулин В.Я.
  • Мигаль В.П.
  • Новиков А.Н.
  • Салагина Г.Н.
  • Александров Б.П.
  • Аксельрод Л.М.
  • Штерн Е.А.
RU2168484C2
ОГНЕУПОРНАЯ БЕТОННАЯ СМЕСЬ (ВАРИАНТЫ) 2011
  • Замятин Степан Романович
  • Гельфенбейн Владимир Евгеньевич
  • Журавлев Юрий Леонидович
  • Бабакова Оксана Львовна
RU2437862C1
СПОСОБ ТРЕХМЕРНОЙ ПЕЧАТИ ОГНЕУПОРНЫХ ИЗДЕЛИЙ 2013
  • Аксельрод Лев Моисеевич
  • Турчин Максим Юрьевич
  • Минниханов Игорь Наилевич
RU2535704C1
УГЛЕРОДСОДЕРЖАЩИЙ ОГНЕУПОР 1998
  • Можжерин В.А.
  • Сакулин В.Я.
  • Мигаль В.П.
  • Новиков А.Н.
  • Салагина Г.Н.
  • Аксельрод Л.М.
  • Штерн Е.А.
RU2151124C1

Иллюстрации к изобретению RU 2 122 535 C1

Реферат патента 1998 года ОГНЕУПОРНЫЙ МАТЕРИАЛ И СПОСОБ ЕГО ПОЛУЧЕНИЯ

Огнеупорный материал и способ его получения относятся к производству огнеупорных материалов, используемых в сталеплавильном производстве, для футеровки химической аппаратуры, работающей при повышенных температурах в агрессивных средах. Огнеупорный материал включает, мас. ч.: оксид алюминия 0,0010 - 98,00, оксид магния 0,0010 - 98,00, оксид кальция 0,0010 - 40,00, оксид циркония 0,0001 - 60,00, оксид кремния 0,0010 - 25,00, оксид титана и/или хрома 0,0010 - 30,00, карбид кремния 0,0010 - 70,00, графит 1,0000 - 70,00, пироуглерод 0,0010 - 20,00. При получении огнеупорного материала смешивают компоненты смеси, формуют полученную смесь, сушат и обжигают в две стадии, причем вторую стадию проводят в среде низших непредельных и/или предельных углеводородов с получением материала, включающего пироуглерод. Технический результат: получение высокоплотного огнеупорного материала с повышенной термоустойчивостью и пониженной смачиваемостью по отношению к расплавленным металлам и шлакам. 2 с.п. ф-лы, 2 табл.

Формула изобретения RU 2 122 535 C1

1. Огнеупорный материал, включающий оксиды алюминия и магния, карбид кремния и графит, отличающийся тем, что материал дополнительно содержит оксиды кальция, циркония и кремния, по крайней мере один из оксидов титана, хрома и пироуглерод при следующем массовом соотношении компонентов, мас.ч.:
Оксид алюминия - 0,0010 - 98,00
Оксид магния - 0,0010 - 98,00
Оксид кальция - 0,0010 - 40,00
Оксид циркония - 0,0001 - 60,00
Оксид кремния - 0,0010 - 25,00
Оксид титана и/или хрома - 0,0010 - 30,00
Карбид кремния - 0,0010 - 70,00
Графит - 1,0000 - 70,00
Пироуглерод - 0,0010 - 20,00
2. Способ получения огнеупорного материала, включающего оксиды алюминия и магния, карбид кремния и графит, включающий смешение компонентов смеси, формование полученной смеси, последующие сушку и обжиг формованной массы, отличающийся тем, что в сырьевую смесь дополнительно вводят оксиды кальция, циркония и кремния, по крайней мере один из оксидов титана, хрома, обжиг формованной массы проводят в две стадии, и его вторую стадию проводят в среде низших непредельных и/или предельных углеводородов с получением материала, включающего пироуглерод.

Документы, цитированные в отчете о поиске Патент 1998 года RU2122535C1

Дозатор жидкости 1982
  • Грифф Аркадий Маврициевич
  • Каплун Михаил Монесович
  • Соколов Михаил Васильевич
  • Пешехонов Алексей Анатольевич
SU1051381A1
US 3753744 A, 21.08.73
Способ получения смоло- и пекосвязанных огнеупоров 1983
  • Ашпин Борис Иннокентьевич
  • Попов Валерий Тимофеевич
  • Уразгалиев Батак Уразгалиевич
  • Моисеев Юрий Анатольевич
  • Колобаева Дина Ивановна
SU1131852A1
Способ получения массы для горячего торкретирования 1984
  • Ашпин Борис Иннокентьевич
  • Уразгалиев Батак Уразгалиевич
  • Маракулин Юрий Аркадьевич
  • Моисеев Юрий Анатольевич
  • Колобаева Дина Ивановна
  • Попов Валерий Тимофеевич
SU1303593A1
УГЛЕРОДСОДЕРЖАЩИЙ ОГНЕУПОР 1992
  • Коптелов В.Н.
  • Сакк В.И.
  • Киселева Е.А.
  • Фролов О.И.
  • Андриевских Л.И.
  • Гареев Н.Г.
  • Чернышова Г.Б.
RU2040507C1
СПОСОБ ПОЛУЧЕНИЯ КОНСТРУКЦИОННОГО ТЕПЛОИЗОЛЯЦИОННОГО УГЛЕРОДНОГО МАТЕРИАЛА И КОНСТРУКЦИОННЫЙ ТЕПЛОИЗОЛЯЦИОННЫЙ УГЛЕРОДНЫЙ МАТЕРИАЛ 1992
  • Колесников С.А.
  • Костиков В.И.
  • Демин А.В.
  • Кондратова Л.С.
  • Васильев А.М.
RU2093494C1
JP 03141157 A, 17.06.91
JP 06056541 A, 01.03.94
Устройство для устранения мешающего действия зажигательной электрической системы двигателей внутреннего сгорания на радиоприем 1922
  • Кулебакин В.С.
SU52A1
GB 1374458 A, 20.11.74
Видоизменение прибора для получения стереоскопических впечатлений от двух изображений различного масштаба 1919
  • Кауфман А.К.
SU54A1

RU 2 122 535 C1

Авторы

Ермолычев Д.А.

Кабаргин С.Л.

Шебанов С.М.

Даты

1998-11-27Публикация

1998-06-10Подача