СПОСОБ ПОЛУЧЕНИЯ МЕТИЛФОРМИАТА Российский патент 1999 года по МПК C07C69/06 C07C67/36 C07C51/12 C07C31/40 

Описание патента на изобретение RU2126788C1

Изобретение относится к области технологии промышленного органического синтеза, в частности, к способам получения метилформиата.

Ценность целевого продукта состоит в разнообразии его химических свойств. Метилформиат можно использовать в качестве донора связанного оксида углерода, при получении карбоновых кислот и их сложных эфиров, в качестве формулирующего агента, кроме того, он является промежуточным продуктом в процессах синтеза формамидов и муравьиной кислоты - ценного консерванта сельскохозяйственных кормов.

Способ получения метилформиата базируется на реакции карбонилирования метанола оксидом углерода под давлением в присутствии алкоголятов щелочных металлов (пат. ФРГ N 496935, кл.12о11, опубл. 27.03.1930 г.). Промышленное осуществление способа осложняется следующими обстоятельствами:
- необходимостью создания развитой поверхности и увеличения времени контакта газообразного оксида углерода и жидкого метанольного раствора катализатора для достижения высокой производительности;
- выделением продуктов разложения катализатора в реакционной аппаратуре и забивкой арматуры, трубопроводов и реактора указанными продуктами;
- непроизводительными потерями катализатора вследствие соосаждения его с продуктами разложения.

В известных способах интенсификации реакционного процесса используют различные варианты осуществления контакта газ (оксид углерода)-жидкость(метанол) (пат. ФРГ N 863046, кл.12о11, опубл.13.01.53 г.; пат.ФРГ N 2243811, кл.12о11, опубл.4.04.74 г.; пат.ФРГ N 2710726, кл.C 07 C 69/06, опубл.15.09.77 г.; авт.св. СССР N 1223598, кл.C 07 C 69/06, заявл.8.02.82 г.). В лучших из этих способов достигнуты результаты, свидетельствующие о протекании процесса карбонилирования в кинетической области, т.е. интенсификация процесса дальнейшим увеличением поверхности контакта фаз не достигается. Повышение скорости процесса синтеза метилформиата из метанола и оксида углерода может быть достигнуто только повышением скорости химической реакции вследствие изменения свойств реакционной среды.

По технической сущности и достигаемым результатам наиболее близок к заявляемому изобретению способ получения метилформиата карбонилированием метанола в присутствии щелочных алкоголятов и добавок олигомеров гидратов окисей олефинов общей формулы HO(CH2CHRO)nH, где R = H или CH3 и n = 2 - 1000, а также добавки пиридина в реакционную смесь карбонилирования (пат. ФРГ N 3221239, кл. C 07 C 69/06, опубл.8.12.83). Процесс ведут при 60-120oC и давлении оксида углерода ниже 3,0 МПа, концентрация метилата натрия равна 2-6 мас. %. Добавки олигомеров гидратов окисей олефинов замедляют осаждение продуктов разложения катализатора в реакционной аппаратуре, тем самым устраняется опасность забивок и появляется возможность отделить твердый осадок в одной точке технологической схемы (на фильтре). При использовании пиридина совместно с олигомерами гидратов окисей олефинов и метилатом натрия в качестве каталитической системы карбонилирования метанола наблюдается некоторое повышение производительности процесса (съем метилформиата 110-200 г/л за час).

Наиболее существенным недостатком известного технического решения является высокий удельный расход применяемого катализатора - метилата натрия (4,14-6,75 кг на тонну метилформиата) вследствие его соосаждения с продуктами его дезактивации на фильтрах установки карбонилирования. Некоторое повышение производительности в указанном способе не оправдывает использования в качестве компонента каталитической системы высокотоксичного пиридина. Таким образом, недостатком способа-прототипа является та же невысокая скорость процесса. Еще одним весьма существенным недостатком известного технического решения является образование в ходе реакционного процесса смолообразных продуктов, затрудняющих отделение фильтрованием продуктов дезактивации катализатора - метилата натрия. Такие смолообразные продукты нерегулярного состава возникают в результате реакций конденсации олигомеров гидратов окисей олефинов, их объемного взаимодействия и процессов карбонилирования.

Целью предлагаемого способа получения метилформиата является снижение потерь катализатора и интенсификация реакционного процесса.

Поставленная цель достигается тем, что катализируемую метилатами натрия или калия реакцию метанола с оксидом углерода под давлением при повышенной температуре ведут в присутствии 0,005 - 015 моль/л оксаперфторалкансульфонатов натрия (калия) общей формулы
CF3CF2(OCFXCF2)nOCF2CF2 SO3M,
где n = 0 - 2,
F, CF3
M = Na, K,
а также 1-10 мас.% сильных органических оснований с pKa 8,7, причем концентрацию метилформиата в продуктах карбонилирования метанола поддерживают в пределах 15-28 мас.%.

Применение указанных соединений в качестве компонентов каталитической системы позволяет повысить производительность реакционного процесса (съем метилформиата с 1 л реакционного объема равен 270,2 г/час), существенно изменить растворимость в реакционном растворе метилата натрия (калия) и продуктов его дезактивации - формиата, карбоната и бикарбоната натрия (калия), вследствие чего изменяется соотношение количества этих солей в жидком растворе и твердом осадке на фильтрах узла карбонилирования и снижается удельный расход катализатора (1,52 кг на 1 т метилформиата). Кроме того, в ходе процесса не наблюдается смолообразования, что выгодно отличает предлагаемый способ от известного технического решения. Существенным является также поддерживание концентрации метилформиата в продуктах карбонилирования в пределах 15-18 мас. %. Это техническое решение позволяет усилить эффект повышения растворимости метилата, формиата, карбоната и бикарбоната щелочного металла в реакционном растворе, вызываемый предложенными выше добавками в каталитическую систему карбонилирования метанола и, таким образом, снизить расход катализатора.

Из предложенных в качестве компонентов каталитической системы синтеза метилформиата оксаперфторалкансульфонатов натрия (или калия) оптимально применяют 0,01-0,1 г. моль/л калиевой соли перфтор-5-метил-3,6-диоксаперфтороктансульфокислоты CF3CF2 OCF(CF3)CF2OCF2CF2SO3K, в присутствии которой удельный расход катализатора снижается до 1,52 кг на 1 т метилформиата. Вместе с тем, вид металла (Na, K) или заместителя (F, CF3) в указанных соединениях не имеют решающего значения для процесса карбонилирования метанола, верхний предел количества олигомерных звеньев -OCFXCF2- (n=2) в предложенных оксаперфторалкансульфонатах обусловлен снижением производительности процесса при (n≥3 из-за снижения количества основного реагента (метанола) в исходном реакционном растворе. Применяемые в предлагаемом способе оксаперфторалкансульфонаты натрия (калия) общей формулы C2F5(OCFXCF2)n OC2F4SO3M получают согласно методике, описанной в пат. США N 3555080 (кл.C 07 C 143/00, заявл. 25.08.1969 г.).

В качестве сильных органических оснований с pKa≥8,7 могут быть использованы различные амины: морфолин, N-метил -α- пирролидон, гуанидин и его производные, причем количество указанных компонентов каталитической системы карбонилирования метанола (не более 10 мас.% также определяется производительностью процесса. Оптимальным является применение 3-8% N-метил -α- пирролидона (pKa = 11,2) или 2-8% гуанидина или его производных (pKa = 13,6), в присутствии которых достигается более высокая производительность реакционного объема по метилформиату (287,1-296,7 г/час и 302,5-318,3 г/час, соответственно).

Новым в предлагаемом изобретении является применение в качестве компонентов каталитической системы карбонилирования метанола оксаперфторалкансульфонатов натрия (калия), а также сильных органических оснований с pKa≥8,7. Требование поддерживать концентрацию метилформиата в продуктах в пределах 15,0 - 28,0 мас.% является также новым.

Способ получения метилформиата согласно предлагаемому изобретению может быть осуществлен в любом из типов аппаратов, описанных в патентах ФРГ NN 863046 (кл. 12о11), 2243811 (кл. 12о11), 2710726 (кл. C 07 с 69/06) или авт. свид. СССР N 1223598 (кл. C 07 с 69/06). Примеры осуществления способа приведены для аппаратуры, описанной в пат. ФРГ N 32221239, кл. C 07 с 69/06, опубл. 8.12.83 г.

На фиг. 1 изображена установка для получения метилформиата, которая состоит из термостатирующего реактора 1 с циркуляционным насосом для эффективного перемешивания смеси оксида углерода с метанолом, фильтра 3, выносного теплообменника 4 и ректификационной колонны 5 с исполнителем 6 и дефлегматором-конденсатором 7.

Реактор карбонилирования 1 перед работой термостатируют, после чего в его верхнюю часть подают метанольный раствор метилата натрия с дополнительными компонентами каталитической системы, в нижнюю часть реактора под давлением вводят оксид углерода. Газожидкостную смесь из нижней части реактора насосом 2 циркулирует через выносной теплообменник 4 и верхнюю часть реактора 1. Часть потока продуктов из реактора, соответствующую количеству образовавшегося метилформиата, насосом 2 через фильтр 3 подают на разделение в ректификационную колонну 5 с испарителем 6 и дефлегматором-конденсатором 7. В качестве дистиллята колонны 5 получают метилформиат, а кубовый остаток - раствор каталитической системы карбонилирования в непрореагировавшем метаноле - возвращают в реактор синтеза метилформиата 1. Осадок продуктов разложения катализатора - метилата натрия, - периодически снимают с фильтра 3 и определяют его состав, после чего фильтр 3 регенерируют промывкой метанолом и продувкой сухим азотом. Абгазы - сдувки с реактора 1, содержащие оксид углерода, азот, примеси кислорода и других газов направляют через конденсатор 7 на сжигание.

Сущность предлагаемого изобретения иллюстрируется следующими примерами.

Пример 1.

Процесс получения метилформиата согласно предлагаемому способу осуществляют в аппаратуре, описанной в пат. ФРГ N 3221239, кл. C 07 с 69/06, опубл. 8.12.83 г. Реакцию метанола с оксидом углерода проводят в цилиндрическом реакторе, внутренним объемом 10 л, снабженном термостатирующей рубашкой и циркуляционным насосом для эффективного перемешивания газожидкостной смеси. Жидкие продукты карбонилирования пропускают через фильтр и отводят в ректификационную колонну, в которой в виде дистиллята получают метилформиат, а кубовый продукт (метанольный раствор катализатора) повторно направляют в реактор карбонилирования метанола. Одновременно в реактор подают сырьевой метанол и недостающее количество компонентов каталитической системы по линии "МС, Кат." (фиг.1).

В термостатированный при 80oC реактор подают 13587,2 г/час исходной смеси карбонилирования, содержащей, мас.%:
2,50 метилата натрия (1,06 мас.% в пересчете на натрий),
0,90 солей натрия-продуктов дезактивации катализатора,
8,00 N-метила -α- пирролидона,
1,25 (0,021 моль/л натриевой соли перфтор-5-метил-3,6-диоксаперфтороктансульфокислоты C2F5OCF(CF3)CF2OC2F4SO3Na
87,35 мас.% метанола (содержание воды не более 0,004 мас.%)
При парциальном давлении 3,0 МПа в реактор вводят 1300 г/час газообразного оксида углерода 99,2% концентрации, содержащего 0,13 мас.%. Двуокиси углерода и не более 0,005 мас. % воды (остальные примеси - азот, метан, кислород).

Для интенсивного перемешивания газа и жидкости смесь циркулируют насосом из нижней части реактора в верхнюю со скоростью 60 л/час.

Из реактора выводят 14851,8 г/час жидких продуктов карбонилирования, содержащих по данным химических и хроматографического анализов, мас.%:
18,20 метилформиата,
70,22 метанола,
2,26 метилата натрия,
7,32 N-мектил -α- пирролидона,
1,14 натриевой соли перфтор-5-метил-3,6-диоксаперфтороктансульфокислоты,
0,86 формиата, карбоната и бикарбоната натрия.

Соли натрия - продукты реакций метилата натрия, отделяют на фильтре, при этом получают 5,308 г/час солей, содержащих, согласно химическому анализу, мас.%:
37,69 формиата натрия,
42,12 бикарбоната натрия,
14,49 карбоната натрия,
5,65 метилата натрия.

Остальное - примеси компонентов каталитической системы N-метил -α- пирролидон и перфтор-5-метил-3,6-диоксаперфтороктансудьфонат натрия.

Фильтрат разделяют ректификацией, кубовый продукт возвращают в реактор карбонилирования, в виде дистиллята получают 2702,5 г/час метилформиата. Одновременно с кубовым продуктом в реактор подают дополнительно сырьевой метанол и недостающее количество компонентов каталитической системы.

Таким образом, при осуществлении способа согласно заявленному изобретению производительность 1 л реактора по метилформиату равна 270,25 г/час, а количество образовавшегося осадка продуктов реакций метилата натрия равно 1,963 кг/тонну метилформиата, т.е. расход метилата натрия (в пересчете на 100% CH3ONa) равен 1,538 кг на тонну метилформиата.

Пример 1а (воспроизведение прототипа).

Синтез метилформиата карбонилированием метанола осуществляют в аппаратуре, описанной в примере 1 и соответствующей пат. ФРГ N 3221239, кл. C 07 C 69/06, опубл. 8.12.83 г. Условия осуществления способа-прототипа соответствуют примеру 3 пат. ФРГ N 3221239.

В термостатированный при 80oC реактор подают 3289 г/час исходной смеси карбонилирования метанола, содержащей, мас.%:
5,87 метилата натрия (2,5 мас.% в пересчете на натрий)
0,08 солей натрия - продуктов реакций метилата,
5,00 полиэтиленгликоля (R = H, n = 1000),
5,00 пиридина,
0,02 воды,
84,03 метанола.

При парциальном давлении 3,0 МПа в реактор вводят 1000 г/час газообразного оксида углерода 99,2% концентрации, содержащего 0,13 мас.% двуокиси углерода и не более 0,005 мас.% воды (остальные примеси - азот, метан, кислород).

Для интенсивного перемешивания газа и жидкости смесь подают циркуляционным насосом из нижней части реактора в верхнюю со скоростью 65 л/час.

Из реактора выводят 4200 г/час продуктов карбонилирования, содержащих по результатам хроматографического и химических анализов, мас.%:
47,5 метилформиата,
40,13 метанола,
4,38 метилата натрия,
3,89 полиэтиленгликоля,
3,89 пиридина,
0,21 карбоната, бикарбоната и формиата натрия.

Соли натрия - продукты реакций метилата натрия, отделяют на фильтре, при этом получают 12,03 г/час осадка, содержащего согласно химическому анализу, мас.%:
23,03 формиата натрия,
19,82 бикарбоната натрия,
6,75 карбоната натрия,
38,15 метилата натрия,
12,45 полиэтиленгликоля и смолообразных продуктов с реакцией нерегулярного состава.

Фильтрат разделяют ректификацией, кубовый продукт смешивают со свежим метанолом и возвращают в реактор карбонилирования. В виде дистиллята получают 1995 г/час метилформиата.

Кубовый продукт возвращают в реактор карбонилирования. Одновременно в реактор вводят дополнительный сырьевой метанол и недостающее количество компонентов каталитической системы.

Таким образом, при воспроизведении способа согласно прототипу достигнута производительность 199,5 г/час метилформиата с 1 л реакционного объема, а количество образовавшихся продуктов реакций метилата натрия составило 6,03 кг на тонну метилформиата, т.е. удельный расход метилата натрия (в пересчете на 100% CH3ONa) равен 4,58 кг на т метилформиата.

Из сравнения показателей производительности процесса, расхода катализатора и количества образовавшегося осадка при осуществлении предлагаемого способа и способа-прототипа (пример 1а) видно, что даже при более низкой концентрации катализатора - метилата натрия (2,5 мас.% по сравнению с 5,87 мас% в прототипе) достигнута более высокая производительность 1 л реакционной аппаратуры (объем метилформиата 276,25 г/час против 199,5 г/час по прототипу), одновременно практически в три раза снижены расход метилата натрия (1,52 кг/т по сравнению с 4,53 кг/т метилформиата и количество осадков-прототипов реакций метилата натрия (1,963 кг/т по сравнению с 6,03 кг/т прототипу).

Примеры 3-14 (влияние состава каталитической системы).

Аппаратурное оформление и технологические параметры процесса полностью соответствуют примеру 1. Варьируют только состав каталитической системы карбонилирования метанола, используя не только различные количества, но и различные химические соединения одного класса в виде компонентов каталитической системы. Результаты этих испытаний приведены в таблице примеров.

Из примеров 2,3 следует, что снижение концентрации катализатора метилата щелочного металла до 0,2 мас.% ведет к снижению производительности реакционной аппаратуры по метилформиату, при повышении до 6 мас.% содержания щелочного метилата наблюдается увеличение количества осадка продуктов реакций метилата, - и повышение расхода катализатора. Таким образом, отклонение концентрации метилата щелочного металла выше и ниже указанных пределов ведет к ухудшению основных характеристик процесса.

Об эффективности применения предложенных компонентов каталитической системы органических оснований и оксаперфторалкансульфонатов натрия (калия) дополнительно свидетельствуют примеры 4-14. Во всех этих примерах достигнуто повышение производительности процесса по метилформиату (по сравнению с прототипом) при одновременном снижении удельного расхода катализатора - щелочного метилата. В каждом из примеров 4-14 снижение расхода катализатора достигают за счет снижения доли его активной формы (CH3OM) в твердом осадке продуктов реакций катализатора, что является следствием повышения растворимости солей в смеси карбонилирования в присутствии предлагаемых добавок (таблица)
При применении оптимального количества перфтор-5-метил-3,6-диоксаперфтороктансульфоната калия (пример 9) удельный расход катализатора составляет 1,52 кг/тонну метилформиата.

Использование N-метил -α- пирролидона (5,0 мас.%, пример 8) или гуанидина (5,0 мас.%, пример 11) в качестве сильных органических оснований позволяет повысить производительность 1 л реакционного объема по метилформиату до 296,7 г/час и 318,3 г/час, соответственно.

Похожие патенты RU2126788C1

название год авторы номер документа
РЕАКТОР СИНТЕЗА МЕТИЛФОРМИАТА 1993
  • Зоботта Георг
  • Скачко Владимир Петрович
  • Паздерский Юрий Антонович
  • Тагаев Олег Алексеевич
  • Караев Ринальд Анатолиевич
RU2146556C1
СПОСОБ ПОЛУЧЕНИЯ МУРАВЬИНОЙ КИСЛОТЫ 1993
  • Зоботта Георг
  • Скачко Владимир Петрович
  • Паздерский Юрий Антонович
  • Тагаев Олег Алексеевич
  • Моисеев И.И.(Ru)
RU2123995C1
СПОСОБ ПОЛУЧЕНИЯ ОЛЕФИНОВЫХ УГЛЕВОДОРОДОВ 1997
  • Йецци Родольфо
  • Бартолини Андреа
  • Буономо Франко
  • Котельников Г.Р.(Ru)
  • Беспалов В.П.(Ru)
RU2127242C1
СПОСОБ ПОЛУЧЕНИЯ ЯНТАРНОЙ КИСЛОТЫ ИЛИ ЕЕ СОЛЕЙ 1997
  • Хейфец В.И.
  • Ермакова Г.Н.
  • Пивоненкова Л.П.
  • Масленникова Т.А.
  • Доронин Ю.В.
  • Фомичев Н.А.
RU2129540C1
СПОСОБ ПОЛУЧЕНИЯ АРОМАТИЧЕСКИХ ФТОРУГЛЕВОДОРОДОВ 1997
  • Кушина Йосиф Дмитриевич
  • Гида Владимир Михайлович
  • Паздерский Юрий Антонович
  • Страшненко Анатолий Викторович
  • Рутковский Эдуард Казимирович
  • Нефедов О.М.(Ru)
RU2147569C1
СПОСОБ ПОЛУЧЕНИЯ НАФТАЛИН-2,6-ДИКАРБОНОВОЙ КИСЛОТЫ 1992
  • Манзуров В.Д.
  • Морозов В.М.
  • Ковалев Л.С.
RU2030386C1
Способ получения метилформиата 1979
  • Тагаев О.А.
  • Жаворонков Н.М.
  • Моисеев И.И.
  • Паздерский Ю.А.
  • Калечиц И.В.
  • Кочубей В.Ф.
SU828661A1
СПОСОБ ПОЛУЧЕНИЯ N-МОРФОЛИНОЭТИЛМЕТАКРИЛАТА 2019
  • Живодеров Александр Васильевич
  • Лёшина Марина Николаевна
  • Ладилова Надежда Юрьевна
  • Макарова Ирина Юрьевна
  • Корниенко Павел Владимирович
  • Ширшин Константин Викторович
RU2714132C1
СПОСОБ ПОЛУЧЕНИЯ АЛКИЛ-ТРЕТ.АЛКИЛОВЫХ ЭФИРОВ 1996
  • Павлов С.Ю.
  • Горшков В.А.
  • Титова Л.Ф.
  • Павлова И.П.
  • Суровцев А.А.
RU2126786C1
СПОСОБ ПОЛУЧЕНИЯ МЕТИЛФОРМИАТА 2007
  • Новиков Олег Николаевич
RU2377232C2

Иллюстрации к изобретению RU 2 126 788 C1

Реферат патента 1999 года СПОСОБ ПОЛУЧЕНИЯ МЕТИЛФОРМИАТА

Метилформиат получают карбонилированием метанола в присутствии метилата калия или натрия в качестве катализатора. В реакционную смесь добавляют 0,005-0,15 моль/л оксаперфторалкансульфоната натрия или калия общей формулы C2F5(JCFXCF2)nOC2F4SO3M, где M=Na, K, X=F, CF3, n = 0-2, а также 1-10 мас.% сильного органического основания с pK≥ 8,7, например N-метил-α-пирролидона или гуанидина. Реакцию осуществляют в реакторе с циркуляционным насосом. Отработанные соли натрия выделяют при помощи фильтра или калия. Фильтрат подвергают ректификации и в качестве дистиллята получают метилформиат. Кубовый продукт возвращаются в реактор карбонилирования. Снижаются потери катализатора и повышается производительность. 3 з.п.ф-лы., 1 табл., 1 ил.

Формула изобретения RU 2 126 788 C1

1. Способ получения метилформиата карбонилированием метанола оксидом углерода с использованием в качестве катализатора 0,2 - 6,0% метилата натрия или калия от массы реакционной смеси, при повышенных температуре и давлении, отличающийся тем, что в реакционную смесь добавляют 0,005 - 0,15 моль/л оксаперфторалкансульфоната натрия или калия общей формулы
CF3CF2(OCFXCF2)nOCF2CF2SO3M,
где n = 0 - 2;
X = F, CF3;
M = Na, K,
а также добавляют 1 - 10 мас.% сильного органического основания с рКа ≥ 8,7, причем концентрацию метилформиата в продуктах реакции поддерживают в пределах 15 - 28 мас.%.
2. Способ по п.1, отличающийся тем, что в реакционную смесь добавляют 0,01 - 0,10 моль/л калиевой соли перфтор-5-метил-3,6-диоксаперфтороктансульфокислоты формулы
CF3CF2OCF(CF3)CF2OCF2CF2SO3K.
3. Способ по пп. 1 и 2, отличающийся тем, что в реакционную смесь добавляют 6 - 8 мас.% N-метил-α-пирролидона. 4. Способ по пп. 1 и 2, отличающийся тем, что в реакционную смесь добавляют 2 - 8 мас.% гуанидина или его производных.

Документы, цитированные в отчете о поиске Патент 1999 года RU2126788C1

DE 3221239 A, 1983
ВСЕСОЮЗНАЯ ЕАТЕ1' ... ./'•:-::::!v'^" 0
SU309003A1
Способ получения формиата натрия 1979
  • Мельников Константин Алексеевич
  • Рогозный Владимир Всеволодович
  • Кармазина Тамара Павловна
  • Сергиенко Иван Данилович
  • Пушкин Александр Георгиевич
SU810663A1
НОВЫЕ КЛЕТКИ ПОЗВОНОЧНЫХ И СПОСОБЫ РЕКОМБИНАНТНОЙ ЭКСПРЕССИИ ИНТЕРЕСУЮЩЕГО ПОЛИПЕПТИДА 2015
  • Лаукс Хольгер
  • Роман Сандрин
  • Бодендорф Урсула
RU2710726C2
Вторично-электронный усилитель 1935
  • Векшинский С.А.
SU48891A1
US 4994603 A, 1991.

RU 2 126 788 C1

Авторы

Зоботта Георг

Скачко Владимир Петрович

Паздерский Юрий Антонович

Тагаев Олег Алексеевич

Моисеев И.И.(Ru)

Даты

1999-02-27Публикация

1993-11-05Подача