СПОСОБ ТЕРМИЧЕСКОЙ ПЕРЕРАБОТКИ ТВЕРДЫХ ОТХОДОВ Российский патент 2000 года по МПК F23G5/27 

Описание патента на изобретение RU2147712C1

Изобретение относится к области термической переработки бытовых, промышленных, медицинских и других отходов, их обезвреживания и может быть использовано в промышленности и коммунальном хозяйстве.

Одной из важнейших проблем современных городов является защита окружающей среды от загрязнения разнообразными отходами, возможность их переработки, обезвреживание токсичных и вредных компонентов, имеющихся как в самих отходах, так и в продуктах их переработки.

Известен способ термической переработки отходов, включающий сушку отходов, пиролиз высушенных отходов с разделением на твердую и газообразную составляющие, удаление газообразной составляющей и введение ее в контакт с жидким расплавом для обработки компонентами твердой составляющей, образовавшей жидкий слой. (Патент Германии N 3940830, кл. F 23 G 5/027).

Недостатком этого способа является низкая степень обработки вредных и токсичных соединений, находящихся как в газе, так и в твердой составляющей пиролиза.

Известен способ термической переработки отходов, включающий сушку отходов, пиролиз высушенных отходов с разделением их на твердый остаток и газообразную составляющую, подачу твердого остатка пиролиза в шлакометаллический расплав в ванну электропечи, введение газообразной составляющей в контакт со шлакометаллическим расплавом, подачу соединений щелочноземельного металла. (Патент России N 2104445, кл. F 23 G 5/027).

Недостатком данного способа, взятого в качестве прототипа, является следующее.

Твердая составляющая пиролиза обладает высокой токсичностью вследствие наличия в ней растворимых солей тяжелых металлов. Поэтому должна проводиться высокотемпературная обработка зольного твердого остатка в плавильной печи с целью деструкции солей, восстановления металлов из оксидов, осаждения и остеклования соединений тяжелых металлов (Cd, Сu, Ni, Cr, Co и др.). Однако процесс плавления в электропечи твердого остатка пиролиза и создание шлакометаллической ванны протекает очень медленно. Все это время, в течение которого будет формироваться шлакометаллическая ванна, вредные токсичные компоненты будут попадать в атмосферу. Кроме того, даже при наличии шлакометаллической ванны часть солей и оксидов тяжелых металлов будет находиться в шлаке, поэтому его дальнейшее использование практически невозможно.

Настоящее изобретение направлено на обеспечение эффективной очистки газов и твердого остатка пиролиза от вредных и токсичных компонентов.

Поставленная техническая задача решается за счет того, что в способе термической переработки отходов, включающем сушку отходов, пиролиз высушенных отходов с разделением их на твердый остаток и газообразную составляющую, подачу твердого остатка в шлакометаллический расплав в ванну электропечи, введение газообразной составляющей в контакт со шлакометаллическим расплавом, подачу соединений щелочноземельного металла, перед подачей твердого остатка пиролиза для приготовления шлакометаллического расплава предварительно наводят шлаковый расплав, нагревают его до температуры 1400 - 1550oC, загружают в полученный расплав материалы и отходы, содержащие металлическое железо для получения шлакожелезистого расплава, после чего начинают подачу в расплав твердого остатка с одновременной подачей на поверхность шлака соединений щелочноземельных металлов для восстановления солей и оксидов тяжелых металлов углеродом твердой составляющей пиролиза или оксидом углерода с растворением тяжелых металлов в железистом расплаве, а газообразную составляющую пиролиза вводят в контакт со всей поверхностью шлакометаллического расплава.

Сущность изобретения заключается в следующем.

Перед началом подачи твердой составляющей пиролиза в электропечь в плавильной ванне печи наводят шлаковую ванну. В качестве шлака используют компоненты, которые составляют затем основу шлаковой ванны. Для этого можно использовать либо шлаки металлургических печей, либо шлаки, используемые для электрошлакового переплава или сварки. Шлак разводят в печи с помощью электроэнергии. Процесс наведения шлака идет вначале в дуговом режиме, а при наплавлении небольшого слоя шлака на подине печи процесс переводят в режим сопротивления, заглубляя электроды в шлак. После наведения шлаковой ванны в нее подают железистые компоненты: отходы железа, стали, чугуна.

Наведенную в плавильной ванне электропечи шлаковую ванну нагревают до температуры 1400 - 1550oC, после чего в расплав начинают подавать твердую составляющую пиролиза и щелочноземельные реагенты. Основное назначение кальцийсодержащих добавок - связать хлор, фтор и другие галогены, а также серу и фосфор в прочные шпинели с оксидами кремния и алюминия, что позволяет в определенной степени предотвратить образование диоксинов и фуранов на последующих этапах газового тракта, а также снизить вероятность проскока сернистого и фосфорного ангидридов в дымовую трубу.

Уровень температуры шлакометаллического расплава поддерживают в процессе обработки твердой и газовой составляющих пиролиз в пределах 1400- 1550oC. Нижний предел обусловлен необходимостью обеспечения быстрого растворения и сплавления щелочноземельных реагентов, например, кальцийсодержащих добавок и керамической части отходов и обеспечения необходимой жидкотекучести шлака для его дальнейшей обработки. Верхний предел 1550oC обусловлен возрастанием доли образования оксидов азота.

Основная доля твердой составляющей отходов - шпинели из оксидов алюминия и кремния, содержащих также оксиды и соли тяжелых металлов. Плавающие на поверхности шлака до момента сплавления с ним керамические составляющие отходов, насыщенные углеродом, несмотря на общий окислительный характер печной атмосферы, обеспечивают существование тонкого ламинарного слоя с восстановительной атмосферой, в котором происходят реакции восстановления оксидов тяжелых металлов. Присутствие железа в шлакометаллическом расплаве способствует более полному восстановлению тяжелых металлов и переходу их в металл. Растворяя восстановленные элементы, железо понижает их активность, что в соответствии с константой равновесия реакций приводит к смещению равновесия в сторону восстановления. Процесс сопровождается значительным уменьшением свободной энергии, поэтому восстановление окислов облегчается еще в большей степени. Растворяя восстановленный элемент, железо выводит его из зоны реакции и тем самым препятствует протеканию вторичных реакций (окислению), а также испарению элемента. Кроме того, железо понижает температуру плавления металлической фазы и позволяет вести процесс при более низкой температуре. Железо, растворяя восстановленные металлы и насыщаясь углеродом, превращается в низко- и среднеуглеродистый чугун, температура плавления которого на 200 - 300oC ниже, чем обеспечивается его высокая текучесть и высокая степень коагуляции мелких расплавленных капель. Оксиды меди, хрома, марганца и ряда других металлов в значительной степени восстанавливаются твердым углеродом и его оксидом, образуя на подине слой чугуна, легированного этими металлами. В плавильную ванну в процессе подачи твердого остатка пиролиза вводят щелочные и щелочноземельные реагенты. Наличие с шлаке натриевой составляющей повышает способность шлакового расплава обволакивать и остекловывать остатки солей тяжелых металлов, не восстановленных углеродом или его оксидом.

Одновременно с подачей в ванну электропечи твердого остатка пиролиза туда направляют газообразную составляющую пиролиза и вводят ее в контакт со всей поверхностью шлаковой ванны.

Способ осуществляется, например, следующим образом.

Твердые отходы подвергаются сушке в барабанной вращающейся печи и самоходом передают в пиролизную камеру, где подсушенные отходы подвергают пиролизу с образованием твердого зольного остатка и газа. Перед подачей твердого остатка в электропечь на подину плавильной ванны загружают шлак, содержащий оксиды кремния, алюминия и кальция. Включают электрическую дугу и в дуговом режиме на подине наводят жидкую шлаковую ванночку. После наведения лужицы жидкого шлака электроды закорачивают в шлак и процесс плавления шлака переводят в режим сопротивления. Шлак нагревают до температуры 1400- 1550oC и загружают туда постепенно куски отходов металла (железо, сталь, чугун). В образовавшийся шлакометаллический расплав начинают подавать твердые остатки и газ из пиролизной камеры. Одновременно в печь подают соединения щелочноземельных металлов, например кальцийсодержащие добавки. По мере плавления в ванне электропечи металлического и шлакового расплавов проводят выпуск металла и шлака через отдельные летки.

Пример реализации способа.

Переработку бытовых отходов, содержащих бумагу, пищевые отходы, дерево, текстиль, кожу, резину, полимерные материалы, стекло, металлолом и другие компоненты, ведут на промышленной печи типа ТПО-25. Отходы, загруженные в контейнеры, подают через шлюзовую камеру в сушильный вращающийся барабан. Одновременно начинают подготовку шлакометаллической ванны в электропечи. На подину печи загружают шлак, содержащий оксид кремния (28-35%), оксид алюминия (20-35%), оксид кальция (25-35%), оксид магния (остальное). Зажигают электрическую дугу и наводят на подине шлаковую ванночку, в которой затем закорачивают электроды и переводят процесс расплавления шлака в режим сопротивления - шлаковый режим. После наведения шлаковой ванны ток увеличивают и нагревают шлак до температуры 1400 - 1550oC, после чего в шлак вводят отходы металла: железный и стальной скрап. Доля железа в шлакожелезистом расплаве колеблется от 25 до 50 весовых процентов. Процесс наведения шлакожелезистой ванны идет 2-3 часа. Затем в подготовленную шлакожелезистую ванну начинают подавать продукты пиролиза. Твердые остатки сталкивают из пиролизной камеры в шлакометаллический расплав, а газ пропускают над всей поверхностью шлакового расплава.

В печь подают кальцийсодержащие добавки: известняк, доломит, мел, ракушечник. Расход известняка составляет в среднем 35 - 40 кг/т отходов. Высокая температура шлака и мощное электромагнитное воздействие проходящего тока обеспечивают проведение диффузионных реакций взаимодействия кальция и других компонентов шлака с пиролитическими газами, остатками углеродистой составляющей и оксидами металлов. На поверхности шлака благодаря низким скоростям газового потока и низкому содержанию кислорода происходят следующие процессы:
1. Соединение хлора, фтора, серы, фосфора, кислотных остатков солей тяжелых металлов с кальцием и натрием, содержащимся в стеклах, с образованием соответствующих соединений и их сплавлением с оксидами кремния, алюминия;
2. Прохождение углетермических реакций восстановления оксидов тяжелых металлов, образовавшихся после термической деструкции, углеродом отходов в присутствии железа, которое понижает температуру проведения этих реакций на 200 - 300oC и увеличивает их полноту за счет изъятия восстановленных металлов из зоны реакции путем растворения их в железе, при этом происходит легирование металла хромом, никелем, марганцем, медью и так далее.

Накопившиеся в плавильной печи шлак и металл периодически, по мере накопления, выпускаются из печи. Жидкий шлак в момент слива гранулируется и используется в промышленности при производстве легких бетонов, шлакоблоков и так далее.

Предложенный способ позволит исключить попадание в конечный продукт переработки и атмосферу вредных и токсичных компонентов в процессе всего времени переработки и обеспечить возможность безотходной обработки твердых бытовых отходов без предварительной сортировки.

Похожие патенты RU2147712C1

название год авторы номер документа
УСТАНОВКА ДЛЯ ТЕРМИЧЕСКОЙ ПЕРЕРАБОТКИ ТВЕРДЫХ ОТХОДОВ 2000
  • Батыгин С.В.
  • Бернадинер М.Н.
  • Волохонский Л.А.
  • Девитайкин А.Г.
  • Лебедев А.В.
  • Попов А.Н.
  • Теслина И.Е.
RU2166697C1
СПОСОБ ТЕРМИЧЕСКОЙ ПЕРЕРАБОТКИ ТВЕРДЫХ ОТХОДОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1998
  • Попов А.Н.
  • Волохонский Л.А.
  • Мухин В.М.
  • Лебедев А.В.
  • Зотов В.Б.
  • Кузьмин А.М.
RU2135896C1
СПОСОБ ПЕРЕРАБОТКИ ОКСИДНОГО СЫРЬЯ, СОДЕРЖАЩЕГО ЦВЕТНЫЕ МЕТАЛЛЫ 1997
  • Леонтьев В.Г.
  • Брюквин В.А.
  • Панфилов С.А.
  • Парецкий В.М.
  • Тарасов А.В.
RU2121518C1
СПОСОБ ТЕРМИЧЕСКОЙ ПЕРЕРАБОТКИ ТВЕРДЫХ ОТХОДОВ 1998
  • Попов А.Н.
  • Волохонский Л.А.
  • Лебедев А.В.
  • Бернадинер М.Н.
RU2147713C1
СПОСОБ ПЕРЕРАБОТКИ ОКИСЛЕННОГО ПОЛИМЕТАЛЛИЧЕСКОГО СЫРЬЯ 1997
  • Гонопольский А.М.
  • Панфилов С.А.
RU2135614C1
СПОСОБ ПЕРЕРАБОТКИ ТОКСИЧНЫХ ПРОМЫШЛЕННЫХ ПРОДУКТОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1995
  • Зотов Л.П.
  • Деревякин Н.А.
RU2081642C1
УСТАНОВКА ДЛЯ СЖИГАНИЯ БЫТОВЫХ ОТХОДОВ 1998
  • Попов А.Н.
  • Зотов В.Б.
  • Лебедев А.В.
  • Бернадинер М.Н.
  • Сипаков А.А.
  • Сергеев В.А.
  • Ратновский А.А.
RU2135895C1
СПОСОБ ПЕРЕРАБОТКИ БЫТОВЫХ И ПРОМЫШЛЕННЫХ ОТХОДОВ 1998
  • Русаков М.Р.
  • Рябко А.Г.
  • Востряков Г.В.
  • Боборин С.В.
RU2126847C1
СПОСОБ ПОЛУЧЕНИЯ НИЗКОУГЛЕРОДИСТЫХ МЕТАЛЛОВ И СПЛАВОВ 2000
  • Дигонский С.В.
  • Дубинин Н.А.
  • Ахмеров Р.Р.
  • Тен В.В.
RU2164543C1
СПОСОБ ПОЛУЧЕНИЯ КРЕМНИЯ ИЗ ЕГО ОКСИДА 2000
  • Дигонский С.В.
  • Дубинин Н.А.
  • Ахмеров Р.Р.
  • Тен В.В.
RU2165989C1

Реферат патента 2000 года СПОСОБ ТЕРМИЧЕСКОЙ ПЕРЕРАБОТКИ ТВЕРДЫХ ОТХОДОВ

Способ термической переработки твердых отходов относится к области переработки бытовых, промышленных, медицинских и других отходов, их обезвреживания и может быть использован в промышленности и коммунальном хозяйстве. Способ включает сушку, пиролиз высушенных отходов с разделением на твердый остаток и газообразную составляющую, подачу твердого остатка в шлакометаллический расплав в ванну электропечи, введение газообразной составляющей пиролиза в контакт со шлакометаллическим расплавом, подачу соединений щелочноземельных металлов. Перед подачей твердого остатка в ванне предварительно наводят шлаковый расплав, нагревают его до температуры 1400-1500°С, загружают в полученный расплав материалы и отходы, содержащие металлическое железо, для получения шлакожелезистого расплава. В расплав подают твердый остаток пиролиза, включающий соли и оксиды тяжелых металлов и углерод, с одновременной подачей на поверхность шлака соединений щелочноземельных металлов для восстановления солей и оксидов тяжелых металлов углеродом твердого остатка пиролиза или оксидом углерода с растворением тяжелых металлов в железистом расплаве. Газообразную составляющую пиролиза вводят в контакт со всей поверхностью жидкого шлакометаллического расплава. Технический результат: повышение эффективности очистки газов и твердого остатка пиролиза от вредных и токсичных компонентов.

Формула изобретения RU 2 147 712 C1

Способ термической переработки твердых отходов, включающий сушку отходов, пиролиз высушенных отходов с разделением на твердый остаток и газообразную составляющую, подачу твердого остатка в шлакометаллический расплав в ванну электропечи, введение газообразной составляющей пиролиза в контакт со шлакометаллическим расплавом, подачу соединений щелочноземельного металла, отличающийся тем, что перед подачей твердого остатка пиролиза для приготовления шлакометаллического расплава в ванне электропечи предварительно наводят шлаковый расплав, нагревают его до температуры 1400 - 1500oС, загружают в полученный расплав материалы и отходы, содержащие металлическое железо, для получения шлакожелезистого расплава, затем подают в расплав твердый остаток пиролиза, включающий соли и оксиды тяжелых металлов и углерод, с одновременной подачей на поверхность шлака соединений щелочноземельных металлов для восстановления солей и оксидов тяжелых металлов углеродом твердого остатка пиролиза или оксидом углерода с растворением тяжелых металлов в железистом расплаве, а газообразную составляющую пиролиза вводят в контакт со всей поверхностью жидкого шлакометаллического расплава.

Документы, цитированные в отчете о поиске Патент 2000 года RU2147712C1

СПОСОБ ТЕРМИЧЕСКОЙ ПЕРЕРАБОТКИ ОТХОДОВ 1993
  • Беньямовский Д.Н.
  • Бернадинер М.Н.
  • Волохонский Л.А.
  • Киссельман М.А.
  • Ланде В.П.
  • Манукян Р.В.
  • Маякин А.С.
  • Попов А.Н.
  • Федоров Л.Г.
  • Букрин В.Б.
  • Окатов А.А.
  • Вертман А.А.
RU2104445C1
RU 2062284 C1, 20.06.1996
US 4574714, A, 11.03.1986
US 5396850 A, 14.03.1995.

RU 2 147 712 C1

Авторы

Попов А.Н.

Волохонский Л.А.

Киссельман М.А.

Косарев Е.А.

Лебедев А.В.

Шенин О.С.

Курлыкин В.Н.

Даты

2000-04-20Публикация

1998-09-30Подача