КЕРАМИЧЕСКАЯ МАССА Российский патент 2000 года по МПК C04B35/10 C04B35/101 

Описание патента на изобретение RU2150442C1

Изобретение относится к области технической керамики и огнеупоров и может быть использовано для изготовления изделий, применяемых в электротехнике, машиностроении, химической и металлургической отраслях промышленности и других отраслях.

Известно применение промышленного порошка оксида алюминия (глинозема) для изготовления керамических изделий [а. с. СССР N 1768559, МПК C 04 B 35/00, 35/10].

Недостатком керамических изделий из глинозема является их пониженная прочность при изгибе (405 - 420 МПа), обусловленная крупнозернистостью исходного сырья - глинозема, который на 85 мас.% состоит из частиц размером до 5 мкм [ГОСТ 6912.1-93. Глинозем. Технические условия].

Ближайшим аналогом, принятым за прототип, является керамическая масса на основе глинозема, содержащая в качестве модифицирующей добавки ультрадисперсный порошок (УПД) оксида алюминия, полученный плазмохимическим методом [Ляди М.Б., Лукин Е.С. Корундовая керамика на основе оксида алюминия, полученного плазмохимическим методом. Стекло и керамика, 1998, N 2 с. 27 - 28].

Недостатком прототипа является, как и в аналоге, пониженная прочность при изгибе.

Задачей заявленного технического решения является повышение прочностных характеристик керамических изделий.

Поставленная задача решается тем, что керамическая масса на основе глинозема с модифицирующей добавкой, содержащей оксид алюминия, полученный плазмохимическим методом, содержит указанные компоненты в следующем соотношении, мас.%:
глинозем - 70,0 - 97,0;
плазмохимически полученный оксид алюминия - 3,0 - 30,0
Смешивание промышленного глинозема с плазмохимически полученным ультрадисперсным порошком (УПД) оксида алюминия, обладающий высокой поверхностной энергией, обеспечивает активацию последующего процесса спекания керамики, из-за чего повышается ее плотность, улучшаются прочностные характеристики.

Введение плазмохимически полученного оксида алюминия в стандартный глинозем до содержания его в смеси менее 3% приводит к ухудшению прочностных характеристик получаемой из такой смеси керамики из-за недозаполнения частицами УДП оксида алюминия пустот между крупными зернами глинозема.

Введение плазмохимически полученного оксида алюминия в стандартный глинозем до его содержания в смеси выше 30% ведет к ухудшению прочностных характеристик получаемой керамики.

Используемый в заявленном способе плазмохимически полученный оксид алюминия производят на плазмохимической установке, в которой воздушный поток нагревают в высокочастотном индукционном электрическом разряде. Горячий воздушный поток подают в реакционную камеру, в которую через диспергирующие устройства вводят распыленный водный раствор нитрата алюминия. Из капель, получивших тепло горячего воздушного потока, испаряется вода, а сухой остаток разлагается до оксида алюминия с размером частиц 0,2 - 0,6 мкм. Оксид алюминия выделяют из пылепарогазовой смеси в вихревых пылеуловителях.

При реализации заявляемого способа оксид алюминия, получаемый плазмохимическим способом, добавляли в заданном для каждого конкретного примера соотношении к порошку стандартного глинозема марки ГК, ГОСТ-6912.1.-93, в этом глиноземе было не менее 85% монозерен до 5 мкм. Порошки смешивали в течение 64 часов. Из смеси на гидравлическом прессе прессовали заготовки образцов для прочностных испытаний. Заготовки спекали в вакуумной печи типа СВЧ с вольфрамовыми нагревателями при остаточном давлении 30 - 40 Па и температуре 1500oC в течение 4 часов.

Прочностные характеристики образцов керамики, изготовленных из смесей стандартного глинозема и плазмохимически полученного оксида алюминия, приведены в прилагаемой таблице.

Из сопоставления примеров 2 - 6 с примерами 1, 7 видно, что керамический материал, получаемый из керамических масс на основе промышленного глинозема, содержащих плазмохимически полученный оксид алюминия в количестве 3,0 - 30,0 мас. %, имеет более высокую прочность при изгибе, чем материалы, полученные только из промышленного глинозема или керамических масс на его основе с отклонениями по содержанию плазмохимически полученного оксида алюминия от заявляемых пределов.

Похожие патенты RU2150442C1

название год авторы номер документа
КЕРАМИЧЕСКИЙ МАТЕРИАЛ НА ОСНОВЕ ГЛИНОЗЕМА, ИЗДЕЛИЕ ИЗ КЕРАМИЧЕСКОГО МАТЕРИАЛА (ВАРИАНТЫ) И СПОСОБ ИХ ИЗГОТОВЛЕНИЯ 2002
  • Кабаргин С.Л.
  • Иванова Л.П.
  • Огородников В.Б.
RU2224548C2
ШИХТА ДЛЯ ИЗГОТОВЛЕНИЯ КЕРАМИКИ 1999
  • Дедов Н.В.
  • Кондаков В.М.
  • Кутявин Э.М.
  • Малый Е.Н.
  • Соловьев А.И.
  • Хандорин Г.П.
RU2164503C2
СПОСОБ ИЗГОТОВЛЕНИЯ ИЗДЕЛИЙ ИЗ КОРУНДОВОЙ КЕРАМИКИ 2008
  • Саванина Надежда Николаевна
  • Русин Михаил Юрьевич
  • Горчакова Лидия Ивановна
  • Саломатина Любовь Ивановна
RU2379257C1
СПОСОБ ПОЛУЧЕНИЯ УЛЬТРАДИСПЕРСНОГО ПОРОШКА МЕДИ 1996
  • Дорда Ф.А.
  • Дедов Н.В.
RU2102190C1
СПОСОБ ПОЛУЧЕНИЯ ИЗДЕЛИЙ ИЗ ВЫСОКОПРОЧНОЙ КЕРАМИКИ 2016
  • Дедов Николай Владимирович
  • Жиганов Александр Николаевич
  • Точилин Сергей Борисович
  • Русаков Игорь Юрьевич
RU2626866C1
КОМПОЗИЦИОННЫЙ МАТЕРИАЛ ДЛЯ ВЫСОКОПРОЧНОЙ КЕРАМИКИ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 1994
  • Дедов Н.В.
  • Дорда Ф.А.
  • Коробцев В.П.
  • Кутявин Э.М.
  • Соловьев А.И.
RU2085543C1
СПОСОБ ПОЛУЧЕНИЯ КЕРАМИЧЕСКОЙ МАССЫ 2002
  • Андриец С.П.
  • Дедов Н.В.
  • Кульков С.Н.
  • Мельников А.Г.
  • Рыжова Л.Н.
RU2233816C2
СПОСОБ ПОЛУЧЕНИЯ ПЬЕЗОКЕРАМИЧЕСКИХ МАТЕРИАЛОВ НА ОСНОВЕ ЦИРКОНАТА-ТИТАНАТА СВИНЦА 1996
  • Дедов Н.В.
  • Кошкарев А.И.
  • Кутявин Э.М.
  • Малый Е.Н.
  • Соловьев А.И.
RU2116990C1
ШИХТА НА ОСНОВЕ ОКСИДА АЛЮМИНИЯ И СПОСОБ ПОЛУЧЕНИЯ ПРОЧНОЙ КЕРАМИКИ 2013
  • Чаплина Екатерина Владимировна
  • Непочатов Юрий Кондратьевич
  • Богаев Александр Андреевич
  • Медведко Олег Викторович
RU2534864C2
СПОСОБ ПОЛУЧЕНИЯ УЛЬТРАДИСПЕРСНОГО ПОРОШКА МЕТАЛЛИЧЕСКОЙ МЕДИ 1993
  • Дорда Ф.А.
  • Дедов Н.В.
  • Соловьев А.И.
  • Коробцев В.П.
RU2043874C1

Иллюстрации к изобретению RU 2 150 442 C1

Реферат патента 2000 года КЕРАМИЧЕСКАЯ МАССА

Изобретение относится к области технической керамики и огнеупоров и может быть использовано для изготовления изделий, применяемых в электротехнике, машиностроении, химической и металлургической промышленностях и других отраслях. Керамическая масса на основе глинозема содержит в качестве модифицирующей добавки плазмохимически полученный оксид алюминия при следующем соотношении компонентов, мас.%: глинозем 70,0 - 97,0, плазмохимически полученный оксид алюминия 3,0 - 30,0. Использование предлагаемой керамической массы позволяет получить материалы с более высокой прочностью при изгибе. 1 табл.

Формула изобретения RU 2 150 442 C1

Керамическая масса на основе глинозема с модифицирующей добавкой, содержащей оксид алюминия, полученный плазмохимическим методом, отличающаяся тем, что она содержит указанные компоненты в следующем соотношении, мас.%:
Глинозем - 70,0 - 97,0
Плазмохимически полученный оксид алюминия - 3,0 - 30,0о

Документы, цитированные в отчете о поиске Патент 2000 года RU2150442C1

ЛЯДИ М.Б
и др
Корундовая керамика на основе оксида алюминия, полученного плазмохимическим методом
- Стекло и керамика, 1998, N 2, с.27 - 28
Способ изготовления керамики на основе оксида алюминия 1990
  • Дубок Виталий Андреевич
  • Лашнева Валентина Васильевна
SU1768559A1
US 4480045 A, 30.10.1984
ВЫСОКОТОЧНЫЙ ПЕНЕТРОМЕТР 0
SU324513A1
Жидкостно-кольцевая машина 1988
  • Рейцман Лев Григорьевич
  • Пирогов Валерий Александрович
SU1571295A1
СЛОСМАН А.И
Влияние предварительной обработки на технологические свойства плазмохимических оксидных порошков
- Огнеупоры, 1994, N 2, с.4 - 7.

RU 2 150 442 C1

Авторы

Соловьев А.И.

Дедов Н.В.

Малый Е.Н.

Кондаков В.М.

Мельников А.Г.

Саблина Т.Ю.

Савченко Н.Л.

Кульков С.Н.

Даты

2000-06-10Публикация

1998-08-31Подача