Изобретение относится к области химической технологии и может быть использовано для синтеза предельных и непредельных углеводородов с предварительным разделением многокомпонентных, многофазных смесей на выходе из реактора на фракции требуемого состава, формирования жидкой стационарной реакционной среды, оптимизации процесса Фишера-Тропша.
В настоящее время разведанные и прогнозируемые запасы природного газа существенно превосходят запасы нефти, поэтому создание новых, комплексных технологий переработки синтез-газа в жидкие моторные топлива, синтеза олефинов и парафинов представляет весьма актуальную задачу в мире, в том числе и России. Кроме того, единственным эффективным способом получения тяжелых парафинов, а также основным процессом получения углеводородных топлив из природного газа остается процесс синтеза Фишера-Тропша.
Современные методы создания новых технологий и способов осуществления процессов базируются на принципах математического моделирования. Для этого, используя современные знания о физико-химических основах процесса (основы катализа, кинетические закономерности сложных реакций, термодинамику фазовых превращений), создаются компьютерные аналоги технологических схем и процессов, позволяющие эффективно проводить оптимизацию технологии на стадии проектирования, выбрать ее наиболее эффективные варианты и способы осуществления процесса.
Ключевым элементом технологии получения углеводородных топлив в процессе Фишера-Тропша является реактор синтеза. Каталитический процесс в реакторе определяет требования к исходному сырью, следовательно, задает основные элементы технологии получения синтез газа. Сложный состав продуктов, получаемых в реакторе, в свою очередь определяет выбор основных технологических стадий, которые должны следовать за реакторным блоком.
В настоящее время в промышленности для синтеза ФТ используется несколько разновидностей каталитических реакторов и способов осуществления процесса. В последнее время все большее внимание уделяют способу осуществления процесса в реакторе с трехфазным суспензированным слоем, так называемому процессу в сларри реакторе, особенно с тех пор, как преимущества такого способа стали очевидными при его промышленной реализации на заводе САСОЛ-II. (Satterfield C. N. , Huff G. A. Usefulness of a slurry-type Fischer-Tropsch reactor for processing synthesis gas of low hydrogen - carbon monoxide ratios. Can. Jour. Chem. Eng., 1982,v 60, N 1, P. 159-162; Lang X., Akgerman A., Bukur D. B. Steady state Fischer-Tropsch synthesis in supercritical propane. Ind. Eng. Chem. Res. 1995,v. 34, N 1, P. 72-77; Jager B., R.Espinosa. Advances in low temperature Fischer-Tropsch synthesis. Catalysis Today 23 (1995) 17-28).
Известен способ формирования растворителя жидких продуктов синтеза ФТ в сларри реакторе, принятый нами в качестве аналога (Lang X., Akgerman А., Bukur D.B. Steady state Fischer-Tropsch synthesis in supercritical propane. Ind. Eng. Chem. Res. 1995, v. 34, N 1, P. 72-77; Jager B., R.Espinosa. Advances in low temperature Fischer-Tropsch synthesis. Catalysis Today 23 (1995) 17-28; Сторч Г., Голамбик Н., Андерсон P. Синтез углеводородов из окиси углерода и водорода. Москва, ИЛ, 1954, 516 с; (The Fischer-Tropsch and related syntheses. Storch H" Golambic N., Anderson R. New York - London, 1951); Saxena S.C. Bubble column reactors and Fischer- Tropsch synthesis. Catal. Rev. -Sci. Eng" v 37, N 2, P. 227-309, 1995).
Способ осуществления процесса синтеза Фишера-Тропша в реакторе такого типа заключается в подаче исходного синтез-газа в объем жидких продуктов реакции, находящихся в растворителе (далее - растворитель), в котором суспензирован катализатор. Исходный синтез-газ в виде пузырей проходит через суспензию, где реагирует на катализаторе с образованием легких и тяжелых углеводородов и воды. Тяжелые углеводороды, в основном, остаются в жидкой фазе и выводятся из реактора вместе с растворителем и катализатором в количестве, обеспечивающем постоянный уровень растворителя в реакторе. Легкие и часть тяжелых углеводородов, непрореагировавшие газы и вода уносятся выходящим газом из реактора, поступают в разделительные устройства. Для разделения образовавшихся углеводородов на легкие моторные топлива, дизельные и тяжелые фракции, для отделения воды применяется сложный технологический комплекс.
Известен способ осуществления процесса и формирования растворителя в реакторе Фишера-Тропша, принятый нами за прототип (D.B.Bukur, S.A.Patel, X. Lang. Fixed bed and slurry reactor studies of Fischer-Tropsch synthesis on precipitated iron catalyst. Applied Catalysis, 61 (1990) 329-349). Такой способ реализуется в сларри реакторе, относящемся к классу трехфазных реакторов - газ-жидкость-твердый катализатор. В таком реакторе мелкодисперсный катализатор суспензирован в жидкой фазе, частицы катализатора поддерживаются в псевдоожиженном состоянии за счет перемешивания жидкой фазы газовыми пузырями и мешалкой. Парогазовая фаза, содержащая не прореагировавшие CO и H2 с насыщенными парами продуктов реакции, выходит из реактора и поступает в конденсатор в котором конденсируются высококипящие продукты реакции при температуре конденсатора, которые возвращаются в сларри реактор.
К недостаткам прототипа можно отнести следующие.
1. Количество возвращаемого в реактор конденсата не регулируется, зависит от температуры конденсатора, скорости реакции.
2. Стационарный состав растворителя формируется только выбором начального состава исходного растворителя, температурой или давлением в реакторе, но поскольку температура и давление в газожидкостных системах - взаимно зависящие параметры, управлять можно будет только одним из них, да и то в узком диапазоне его изменения.
Изобретение решает задачи создания способа предварительного разделения продуктов реакции синтеза Фишера-Тропша на выходе из реактора на несколько углеводородсодержащих фракций; способа формирования стационарного состава растворителя.
Задачи предварительного разделения решаются: регулированием доли возвращаемых в реактор конденсированных продуктов (рефлюкс) в количестве, не превышающим общее количество конденсирующихся продуктов с выхода реактора; изменением компонентного состава возвращаемого конденсата.
Задача формирования стационарного состава растворителя, обеспечивающего требуемую селективность и производительность целевой углеводородной фракции, решается выбором количества и состава возвращаемого в реактор жидкого продукта.
На фиг.1 представлена принципиальная схема, иллюстрирующая способы разделения и формирования состава растворителя в процессе реакции синтеза Фишера-Тропша. Здесь синтез-газ, поток 0_G, с заданным соотношением CO/H2 подают в реактор синтеза (блок В1). Сюда же поступает возвратный поток конденсата 3_L, получаемый в дефлегматоре (блок В2), после отделения воды.
Поток парогаза 1_G после реактора поступает на охлаждение в дефлегматор. Здесь при температуре дефлегматора (Т2) происходит конденсация части продуктов синтеза. Компонентный состав образовавшегося конденсата жестко связан фазовым равновесием с температурой. Образовавшаяся жидкая углеводородная фракция 34_L делится на две части: поток 3_L и поток 4_L. Первую часть возвращают в реактор, а его вторую часть, поток 4_L, подают на дальнейшую переработку. Отношение потока рефлюкса 3_L к потоку 34_L задают коэффициентом β. Этот параметр, как и температура дефлегматора Т2, которая меняет состав конденсата, являются управляющими параметрами процесса.
В условиях синтеза, при температурах 530-550 K, поступающий в реактор сухой синтез-газ непрерывно насыщается парами углеводородов, которые уходят из реактора вместе с газообразными продуктами реакции. В результате, при большом испарении, поток 1_L может стать отрицательным, что равноценно непрерывному уменьшению объема жидкости-растворителя в реакторе. Поток рефлюкса компенсирует унос жидкой фазы из реактора и обеспечивает стационарный состав жидкой фазы в реакторе.
В таблице приведены параметры процесса, при которых проводились расчеты и получены примеры. Такие параметры, как температура, давление, объемная скорость, соотношение H2/CO в исходном газе поддерживают постоянными.
Сущность изобретения иллюстрируется следующими примерами.
Пример 1. В качестве исходного растворителя в реакторе используют октакозан (C28H58) с температурой плавления 334,3 K, температурой кипения 610 K.
Варьируют коэффициент β, определяющий долю возвращаемого конденсата - поток 3-L. Температуру конденсации в дефлегматоре принимают равной 373K.
На фиг. 2(а,b) приведены распределения углеводородов по фракциям в выходных потоках соответственно при β=1 и при β=0,5. При β=1 образуются два выходящих целевых потока из реактора: поток жидкости (1-L) и поток парогаза после дефлегматора (2-G). При 1 > β > 0 число выходящих потоков равно трем, поскольку к двум предыдущим добавляется еще часть потока (4-L), не возвращаемая на реактор.
Рассматривается случай β = 1, фиг. 2a. В выходящих потоках видно четкое разделение спектров на легкие и тяжелые фракции. Таким образом, в отличие от открытой схемы, рефлюкс дает возможность получить разделение на легкие и тяжелые углеводородные фракции.
В случае β < 1, фиг.2b - как отмечалось выше, отбирают три фракции полупродукта из реактора, четко разделенные на легкие, средние и тяжелые углеводороды. Таким образом, количеством рефлюкса существенно воздействуют на процесс разделения углеводородных продуктов синтеза на фракции.
Пример 2. Варьируют состав возвращаемых конденсированных продуктов изменением температуры в дефлегматоре, при которой проводят конденсацию парогаза, выходящего из реактора. На фиг. 2b, 3 (a,b) приведены распределения углеводородов по фракциям в выходных потоках 2-G, 4-L и 1-L из реактора при трех температурах дефлегматора: 373K, 423K и 473K, соответственно, и β = 0,5. Из чертежей следует, что с изменением состава конденсата в результате увеличения температуры дефлегматора разделение становится более четким, спектры тяжелых и легких углеводородных фракций еще больше расходятся в разные стороны. Таким образом, варьированием состава конденсата, возвращаемого в реактор, воздействуют на степень разделения продуктов на выходе реактора синтеза Фишера-Тропша.
Пример 3. С целью выбора стационарного состава растворителя в сларри реакторе синтеза Фишера-Тропша регулируют компонентный состав и долю жидких углеводородов, возвращаемых в реактор. Поскольку фракционный состав выходного потока 1-L из реактора соответствует фракционному составу растворителя, из фиг. 2(а, b) и 3 (a,b) следует, что регулирование доли жидких углеводородов и компонентного состава возвращаемых в реактор жидких углеводородов приводит к изменению состава растворителя.
Как видно из примеров, предлагаемый способ позволяет осуществлять разделение продуктов реакции синтеза Фишера-Тропша на выходе из реактора на несколько углеводородсодержащих фракций, формировать стационарный состав растворителя.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОЛУЧЕНИЯ КОМПОНЕНТОВ МОТОРНЫХ ТОПЛИВ (БИФОРМИНГ-1) | 1999 |
|
RU2144056C1 |
СПОСОБ ПОЛУЧЕНИЯ МОТОРНЫХ ТОПЛИВ (ВАРИАНТЫ) | 2002 |
|
RU2216569C1 |
КАТАЛИЗАТОР И СПОСОБ ПОЛУЧЕНИЯ АЛИФАТИЧЕСКИХ УГЛЕВОДОРОДОВ ИЗ ОКСИДА УГЛЕРОДА И ВОДОРОДА В ЕГО ПРИСУТСТВИИ | 2010 |
|
RU2443471C2 |
СПОСОБ ПРИГОТОВЛЕНИЯ КАТАЛИЗАТОРА И СПОСОБ ПОЛУЧЕНИЯ УГЛЕВОДОРОДОВ И ИХ КИСЛОРОДСОДЕРЖАЩИХ ПРОИЗВОДНЫХ С ЕГО ИСПОЛЬЗОВАНИЕМ | 2003 |
|
RU2227067C1 |
СПОСОБ ПОЛУЧЕНИЯ УГЛЕВОДОРОДОВ ИЗ ОКСИДОВ УГЛЕРОДА И ВОДОРОДА | 2002 |
|
RU2204546C1 |
КАТАЛИЗАТОР И СПОСОБ ПОЛУЧЕНИЯ ФЕНОЛА ИЗ БЕНЗОЛА | 2002 |
|
RU2205688C1 |
СПОСОБ ПОЛУЧЕНИЯ ЦИКЛОГЕКСАНОНА ИЗ БЕНЗОЛА | 2002 |
|
RU2205819C1 |
СПОСОБ КАТАЛИТИЧЕСКОЙ ПЕРЕРАБОТКИ МЕТАНА | 2001 |
|
RU2186755C1 |
СПОСОБ ПОЛУЧЕНИЯ НАНОРАЗМЕРНОГО КАТАЛИЗАТОРА СИНТЕЗА ФИШЕРА-ТРОПША И СПОСОБ СИНТЕЗА ФИШЕРА-ТРОПША С ЕГО ПРИМЕНЕНИЕМ | 2016 |
|
RU2641299C1 |
ПОРИСТЫЙ АЗОТСОДЕРЖАЩИЙ УГЛЕРОДНЫЙ МАТЕРИАЛ И СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ | 1999 |
|
RU2147925C1 |
Изобретение относится к области химической технологии и может быть использовано для синтеза предельных и непредельных углеводородов с предварительным разделением многокомпонентных, многофазных смесей на выходе из реактора на фракции требуемого состава, формирования жидкой стационарной реакционной среды, оптимизации процесса Фишера-Тропша. В реактор, содержащий жидкий растворитель с суспензированным в нем катализатором, подают СО и Н2, возвращают конденсированные продукты синтеза в реактор, причем изменением температуры в дефлегматоре или изменением доли конденсированных продуктов реакции, возвращаемых в реактор в количестве, не превышающем общее количество конденсирующихся продуктов с выхода реактора, изменяют компонентный состав возвращаемого в реактор конденсата. Для поддержания стационарного состава растворителя регулируют количество и состав возвращаемых в реактор жидких продуктов реакции. 3 c.п. ф-лы, 1 табл., 3 ил.
D.B | |||
BUKUR et | |||
Al | |||
Fixed bed and slurry reactor studies of Fischer - Tropsh synthesis on precipitated iron catalyst.applied catalysis, 61, 1990, с | |||
Букса для железнодорожного подвижного состава | 1922 |
|
SU329A1 |
АЛЕКСАНДРОВ И.А | |||
Перегонка и ректификация в нефтепереработке | |||
- М.: Химия, 1981, с | |||
Способ искусственного получения акустического резонанса | 1922 |
|
SU334A1 |
Способ получения этана и/или этилена | 1975 |
|
SU701529A3 |
ГЕРБИЦИД | 1971 |
|
SU423265A3 |
US 4471145 А, 11.09.1984 | |||
СПОСОБ ОПРЕДЕЛЕНИЯ ВРЕМЕНИ НАСТУПЛЕНИЯ РОДОВ ПРИ ДОРОДОВОМ ИЗЛИТИИ ОКОЛОПЛОДНЫХ ВОД | 2001 |
|
RU2223029C2 |
US 5506272 А, 19.03.1996. |
Авторы
Даты
2000-09-27—Публикация
1998-12-30—Подача