СПОСОБ ПЕРЕРАБОТКИ ОТРАБОТАННОЙ ФУТЕРОВКИ АЛЮМИНИЕВЫХ ЭЛЕКТРОЛИЗЕРОВ Российский патент 2001 года по МПК C22B7/00 C01F7/38 

Описание патента на изобретение RU2171853C2

Изобретение относится к цветной металлургии, в частности к производству глинозема и алюминия, и может быть использовано для переработки (утилизации) отработанной футеровки (выбойка катодной части, бетонные днища электролизеров, шамотная засыпка, кирпич красный, подушка, цокольный кирпич и пр.), демонтированных электролизеров алюминиевого производства (далее, поскольку содержание оксидов кремния и алюминия в ней в среднем превышает 50% - кирпичная футеровка).

В настоящее время на предприятиях алюминиевой промышленности России ежегодно образуется и вывозится в отвал или складируется в накопителях более 200 тыс. тонн кирпичной футеровки демонтированных электролизеров, содержащей в основном соединения кремния, алюминия, натрия, фтора, а также углерод и примеси, в частности, цианидов.

Известен способ обработки путем теплового удара отработанной футеровки алюминиевых электролизеров по патенту Франции N 2664297, кл. C 25 C 7/00, опубликованному 10.01.92, заключающийся в том, что измельченную отработанную футеровку, содержащую кремне-алюминиевые и углеродные продукты, пропитанные фтористыми соединениями подвергают обработке тепловым ударом в смеси с минеральной порошкообразной добавкой, способной связывать при нагревании, возможно, при расплавлении, фтористые соединения с образованием новых устойчивых и нерастворимых соединений, таких как фторид кальция, двойные, тройные или четвертичные соединения NaF, CaF2, SiO2, Al2O3, CaSO4, Na2SO4, типа нефелина и др.

Недостатком этого способа является его воздействие на футеровку только с целью перевода растворимых соединений фтора, содержащихся в ней, в новые устойчивые и нерастворимые соединения и направление переработанной футеровки в большем (за счет минеральной добавки), чем первоначально, объеме на захоронение.

Известен способ удаления токсичных веществ из отработанной футеровки алюминиевых электролизеров в смеси известковой суспензии посредством ее термообработки, гашения известковым шламом и послепечной обработки, по патенту США N 5164174, кл. C 01 B 7/20, опубликованному 17.11.92. Этот способ создает условия для более полного удаления (разложения) цианидов и снижения содержания выщелачиваемых фторидов в материале путем его обработки после термической обработки известковой суспензией.

Недостатком данного способа также является его узкое специализированное воздействие на цианиды и фториды, не решая вопросов комплексного извлечения и использования таких основных компонентов футеровки как соединения алюминия, кремния, натрия; сложность аппаратурного оформления.

Известен (по патенту РФ N 2103392, кл. C 22 B 7/00, опубликованному 27.06.96) способ термической обработки измельченной использованной футеровки алюминиевых электролизеров в смеси с порошкообразной минеральной добавкой, способной в газовом потоке при высокой температуре соединяться с плавлением или без него с пропитывающими футеровку растворимыми фтористыми соединениями с образованием новых устойчивых и нерастворимых соединений. При нагреве частиц до 400-750oC происходит также разложение (нейтрализация) цианидов.

После охлаждения частиц и осаждения их из газового потока содержание выщелачиваемых цианидов в продукте уменьшается в сто раз, а содержание выщелачиваемого фтора не превышает 0,2%. Этот способ принят за прототип.

Недостатком этого способа, как и первых двух, является его направленность на нейтрализацию цианидов и растворимых соединений фтора, увеличение за счет минеральной добавки общей массы отходов, получение в основном экологического эффекта при значительных материальных затратах.

Технической задачей является обеспечение комплексной переработки отработанной футеровки демонтированных электролизеров с извлечением из нее ценных компонентов - оксидов алюминия, щелочных металлов, нейтрализацией цианидов, растворимых фторидов, использованием в технологическом процессе углерода футеровки, использованием оставшегося после извлечения ценных компонентов и углерода шлама в производстве цемента, силикатного кирпича или дорожном строительстве; улучшение экологического состояния окружающей среды.

Технический результат достигается тем, что отработанную футеровку алюминиевых электролизеров, содержащую менее 30% углерода измельчают до крупности менее 1 мм в смеси с минеральной массой, например, известняком, и полученную смесь в количестве 1-20% сухой массы вводят в качестве добавки в сырьевую глинозем-соду-известняксодержащую пульпу глиноземного производства перед подачей ее на термическую обработку в печь спекания, совмещая таким образом термическую обработку отработанной футеровки с термической обработкой пульпы глиноземного производства. Компоненты, содержащиеся в отработанной футеровке, проходят переработку совместно с глиноземсодержащим спеком на всех последующих гидрохимических переделах глиноземного производства.

Минеральная добавка в виде известняка может быть введена в глиноземсодержащую пульпу на стадии ее приготовления.

Известняк вводят в количестве, достаточном для связывания оксида кремния и фтора добавки - футеровки в двукальциевый силикат и фторид кальция или куспидин - CaF2 • 3CaO • 2SiO2. Содержание щелочи, необходимой для образования алюмината и феррита натрия (калия) футеровки корректируют составом оборотного раствора, на котором ведут размол шихты и футеровки и в который при необходимости вводят недостающее количество щелочи.

При термообработке в печи спекания при температуре выше 1000oC происходит взаимодействие между компонентами шихты с образованием растворимого алюмината натрия, гидролизующегося феррита натрия (калия), нерастворимых двукальциевого силиката, фторида кальция и других двойных, тройных соединений и пр. Под влиянием минерализующего воздействия фтористых соединений происходит более полное взаимодействие исходных компонентов шихты сравнительно со спеканием в их отсутствии.

Углеродная составляющая шихты сгорает в печи, обеспечивая протекание восстановительных реакций, также способствует более полному взаимодействию компонентов шихты. Одновременно при сгорании углеродной составляющей выделяется дополнительное тепло, позволяющее снизить удельный расход топлива на спекание.

Под воздействием высоких температур происходит разложение (нейтрализация) цианидов, с образованием азота и оксидов углерода и азота.

Полученную в печи спекшуюся массу - спек далее перерабатывают традиционными гидрохимическими способами глиноземного производства с получением глинозема, содопродуктов, содощелочного раствора и твердого остатка - шлама.

Фтористые соединения, связанные в процессе спекания в нерастворимые формы, выводят из процесса в составе шлама, который в зависимости от состава направляют на производство цемента, силикатного кирпича (белитовый шлам) или на дорожное строительство.

Возможность осуществления способа проверена в лабораторных условиях.

Исследования показали, что использование кирпичной футеровки в качестве добавки в шихту для спекания глиноземного производства позволяет получить с повышением качества опека уровень извлечения алюминия и щелочных металлов из сырья и футеровки на уровне 86-92%, практическое отсутствие в растворах от выщелачивания спека растворимых соединений фтора и цианидов, отсутствие частиц углерода в спеке, возможность получения спека прежнего качества при более низкой температуре спекания.

Результаты лабораторных исследований приведены в таблицах 1 и 2.

Как следует из табл. 1, ввод добавки-футеровки в сырьевую шихту приводит к повышению уровня извлечения Al2O3 и Na2O из полученного спека.

Из табл. 2 следует, что ввод добавки-футеровки в сырьевую шихту приводит к снижению удельного выхода шлама (по отношению к массе сухой шихты) за счет повышения уровня извлечения из шихты Al2O3 и Na2O и выгорания содержащегося в добавке-футеровке углерода.

Использование заявляемого способа позволяет улучшить экологическое состояние окружающей среды путем связывания водорастворимых фтористых соединений футеровки в водонерастворимые формы, нейтрализации цианидов, извлечь из сырья и футеровки около 90% содержащихся в них соединений алюминия и щелочных металлов, использовать в качестве восстановителя и энергоносителя содержащийся в футеровке углерод, твердый остаток - шлам после гидрохимической обработки использовать для производства цемента, силикатного кирпича или дорожного строительства, повысить экономическую эффективность производства глинозема и алюминия.

Похожие патенты RU2171853C2

название год авторы номер документа
СПОСОБ ПЕРЕРАБОТКИ УГЛЕРОДИСТОГО ШЛАМА, ВЫВОДИМОГО ИЗ СИСТЕМЫ ЭЛЕКТРОЛИТИЧЕСКОГО ПОЛУЧЕНИЯ АЛЮМИНИЯ 1999
  • Барановский В.В.
  • Барановский А.В.
RU2167210C2
СПОСОБ ПЕРЕРАБОТКИ ОТРАБОТАННОЙ УГОЛЬНОЙ ФУТЕРОВКИ АЛЮМИНИЕВЫХ ЭЛЕКТРОЛИЗЕРОВ 2000
  • Барановский В.В.
  • Барановский А.В.
  • Ланкин В.П.
  • Кононов М.П.
  • Липинский Л.П.
  • Богомолов А.Н.
  • Тесля В.Г.
RU2199488C2
СПОСОБ ОБЕЗВРЕЖИВАНИЯ ОТРАБОТАННОЙ ЦИАНИДСОДЕРЖАЩЕЙ УГОЛЬНОЙ ФУТЕРОВКИ АЛЮМИНИЕВЫХ ЭЛЕКТРОЛИЗЕРОВ 1997
  • Утков В.А.
  • Битнер А.А.
  • Петров С.И.
  • Нечаев Г.П.
  • Цымбалов С.Д.
  • Полозов А.Н.
  • Тесля В.Г.
RU2157418C2
СПОСОБ ПЕРЕРАБОТКИ НА ГЛИНОЗЕМ НИЗКОКАЧЕСТВЕННОГО БОКСИТА ПО ПОСЛЕДОВАТЕЛЬНОЙ СХЕМЕ БАЙЕР-СПЕКАНИЕ 1996
  • Майер А.А.
  • Лапин А.А.
  • Срибнер Н.Г.
  • Паромова И.В.
RU2113406C1
СПОСОБ ПЕРЕРАБОТКИ НЕФЕЛИНА 1991
  • Ровинский С.В.
RU2015107C1
СПОСОБ ПЕРЕРАБОТКИ ФТОРСОДЕРЖАЩИХ ОТХОДОВ ПРОИЗВОДСТВА АЛЮМИНИЯ ЭЛЕКТРОЛИЗОМ 1995
  • Тунгусов В.П.
  • Кононов М.П.
RU2092439C1
СПОСОБ ПЕРЕРАБОТКИ БОКСИТОВ НА ГЛИНОЗЕМ 1999
  • Майер А.А.
  • Лапин А.А.
  • Тихонов Н.Н.
  • Паромова И.В.
  • Матукайтис А.А.
RU2181695C2
СПОСОБ ПЕРЕРАБОТКИ ОГНЕУПОРНОЙ ЧАСТИ ОТРАБОТАННОЙ ФУТЕРОВКИ АЛЮМИНИЕВОГО ЭЛЕКТРОЛИЗЕРА 2018
  • Богданов Юрий Викторович
  • Гущинский Андрей Анатольевич
  • Кондратьев Виктор Викторович
  • Петровский Алексей Анатольевич
  • Колосов Александр Дмитриевич
  • Горовой Валерий Олегович
RU2683400C1
СПОСОБ МОДЕЛИРОВАНИЯ АГИТАЦИОННОГО ВЫЩЕЛАЧИВАНИЯ НЕФЕЛИНОВОГО СПЕКА В ЛАБОРАТОРНЫХ УСЛОВИЯХ 1991
  • Арлюк Б.И.
  • Зенькова Н.А.
  • Горбачева Т.В.
  • Кириллова Т.А.
RU2023667C1
СПОСОБ ПЕРЕРАБОТКИ НЕФЕЛИНОВЫХ РУД И КОНЦЕНТРАТОВ 2007
RU2340559C1

Иллюстрации к изобретению RU 2 171 853 C2

Реферат патента 2001 года СПОСОБ ПЕРЕРАБОТКИ ОТРАБОТАННОЙ ФУТЕРОВКИ АЛЮМИНИЕВЫХ ЭЛЕКТРОЛИЗЕРОВ

Изобретение относится к цветной металлургии, в частности к производству алюминия и глинозема, и может быть использовано при утилизации кирпичной футеровки демонтированных электролизеров. Способ предназначен для переработки отработанной кирпичной футеровки демонтированных электролизеров алюминиевого производства с нейтрализацией растворимых фторидов, цианидов, выделением (извлечением) соединений алюминия, щелочных металлов, полезным использованием углерода и улучшением экологического состояния окружающей среды. Отработанную футеровку алюминиевых электролизеров, содержащую менее 30% углерода в измельченном виде в смеси с известняком, вводят в качестве добавки в сырьевую глинозем-соду-известняксодержащую пульпу глиноземного производства, включающего передел спекания; подвергают тепловой обработке в печи спекания с получением спекшейся массы-спека. Добавку берут в количестве 1-20 мас.% Полученный спек подвергают гидрохимической обработке по известным способам глиноземного производства для извлечения оксидов алюминия и щелочных металлов в виде глинозема, соды, поташа. Оставшийся после гидрохимической обработки шлам - твердый остаток в зависимости от состава направляют на производство цемента, силикатного кирпича (белитовый шлам), дорожное строительство. 1 з.п. ф-лы, 2 табл.

Формула изобретения RU 2 171 853 C2

1. Способ переработки отработанной футеровки алюминиевых электролизеров, включающий ее смешение с минеральной массой, измельчение, отличающийся тем, что используют отработанную футеровку, содержащую менее 30% углерода, а в качестве минеральной массы используют известняк, при этом полученную смесь в количестве 1-20 мас.% вводят в качестве добавки в сырьевую глинозем-соду-известняксодержащую пульпу глиноземного производства и осуществляют термическую обработку совместно с термической обработкой глиноземсодержащей пульпы. 2. Способ по п.1, отличающийся тем, что известняк вводят в сырьевую глинозем-соду-известняксодержащую пульпу на стадии ее приготовления.

Документы, цитированные в отчете о поиске Патент 2001 года RU2171853C2

СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ ИСПОЛЬЗОВАННЫХ НАБОЕК ЭЛЕКТРОЛИЗНЫХ ВАН HALL-HEROULT 1993
  • Эрик Баррийон[Fr]
  • Пьер-Бернар Персонне[Fr]
  • Жан-Клод Бонтрон[Fr]
  • Даниель Ларонз[Fr]
RU2103392C1
Способ переработки алюмосиликатов на глинозем 1979
  • Арлюк Б.И.
  • Срибнер Н.Г.
  • Екимов В.А.
  • Логачев Г.П.
  • Лубенский Л.М.
  • Гайдамакин Ю.Г.
  • Алехин О.П.
  • Ушаков Ю.А.
SU758706A1
RU 2073069 C1, 10.02.1997
СПОСОБ ПЕРЕРАБОТКИ АЛЮМИНИЙСОДЕРЖАЩИХ ЗОЛ ОТ СЖИГАНИЯ УГЛЕЙ 1996
  • Шаталов В.В.
  • Лайнер Ю.А.
  • Свиридов А.Н.
  • Смирнова И.С.
  • Ряховский С.М.
  • Федоров В.Д.
  • Русаков И.И.
  • Каушанский В.Е.
  • Якунина Э.Ю.
RU2097329C1
Способ определения динамических характеристик пневматической шины транспортного средства 1985
  • Русадзе Тамаз Платонович
  • Лоев Анатолий Маркович
  • Дарахвелидзе Ушанги Георгиевич
  • Самадалашвили Альберт Гугуцович
  • Ахобадзе Нугзари Бучунович
SU1383136A1
СПОСОБ УПРАВЛЕНИЯ ЭЛЕКТРОННО-ЛУЧЕВОЙ ЗОННОЙ ПЛАВКОЙ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2007
  • Глебовский Вадим Георгиевич
  • Штинов Евгений Дмитриевич
  • Божко Сергей Иванович
  • Лысенко Олег Николаевич
  • Семенов Валерий Николаевич
RU2359074C1

RU 2 171 853 C2

Авторы

Барановский В.В.

Барановский А.В.

Даты

2001-08-10Публикация

1999-05-11Подача