Изобретение относится к области получения кремнийорганических соединений, в частности к способу получения трифенилсиланола, который используется при осуществлении различных химических технологий - в качестве компонентов вулканизуемых резиновых смесей, компонента катализаторов полимеризации олефинов (полиэтилена, полипропилена), при вулканизации силиконовых каучуков, производстве термостойких покрытий, в синтезе поликарбонатов.
Известен способ получения трифенилсиланола и его натриевых солей путем взаимодействия трифенилалкоксисилана или гексафенилдисилоксана с водным раствором щелочи (пат. Великобритании 631506, выданный американской корпорации Dow Corning в 1948 году)
(C6H5)3SiOR + NaOH/H2O ---> (C6H5)3SiOH
R - алкил, Si(C6H5)3.
Серьезным недостатком способа является дефицит исходных компонентов, трифенилалкоксисиланов и гексафенилдисилоксана, и сравнительно невысокий (60-70%) выход целевого продукта.
Описан метод гидролиза трифенилгалоидсилана водным раствором поташа с получением калиевой соли трифенилсиланола (Андрианов К.А. Методы элементоорганической химии. Кремний. - М.: Наука, 1968, с. 207-212)
(С6H5)3SiCl + К2СО3/H2O ---> (С6H5)3SiOK
Трифенилхлорсилан как побочный продукт образуется при прямом синтезе фенилхлорсиланов, который можно представить уравнением:
Выход последнего очень низкий, и выделение его необходимой степени чистоты (94-95%) осложняется присутствием сравнимого с ним количества примесей - тетрафенилсилана, гексафенилдисилана, фенилполисиланов, фенилполисилоксанов. Выделение и очистка трифенилхлорсилана осуществляется в несколько стадий (высоковакуумная перегонка, промывка концентрата трифенилхлорсилана и перекристаллизация остатка), что требует больших энергозатрат и значительного расхода растворителей (бензина, толуола, гексана).
Эти же недостатки, связанные с использованием трифенилхлорсилана в качестве сырья для получения трифенилсиланола под действием органомагнийгалогенида и воды, присущи процессу, описанному в статье J. Organic Chemistry. 1959, v. 24, р. 1588.
Наиболее близким по изобретательскому уровню и технической сущности является способ получения трифенилсиланола гидролизом трифенилхлорсилана, принятый за прототип, в растворе толуола (Назарова Д.В. и др. Металлорганические компоненты катализаторов, НИИТЭХИМ, 1986, с. 102-105) по реакции
(С6H5)3SiCl + H2O ---> (С6H5)3SiOH
Выход трифенилсиланола при этом довольно высок (80-90% от теоретического), однако остаются труднодоступность и дороговизна исходного трифенилхлорсилана, как весьма существенный недостаток, который не позволяет эксплуатировать способ в широком масштабе.
Задача предлагаемого изобретения - разработать эффективный способ получения трифенилсиланола с высоким выходом и чистотой продукта, не обладающий приведенными выше недостатками.
Поставленная задача решена тем, что нами предложен и практически осуществлен способ взаимодействия дифенилдихлорсилана или фенилтрихлорсилана с реактивом Гриньяра (фенилмагнийхлоридом) и водой в смеси растворителей тетрагидрофурана (ТГФ) и толуола с последующим выделением целевого продукта из органической фазы. Процесс протекает согласно следующим уравнениям:
C6H5Cl + Mg ---> C6H5MgCl
(С6Н5)2SiCl2 + C6H5MgCl ---> (C6H5)3SiCl + MgCl2
(C6H5)SiCl3 + 2C6H5MgCl ---> (C6H5)3SiCl + 2MgCl2
(С6H5)3SiCl + H2O ---> (С6H5)3SiOH
В ходе наших экспериментальных исследований установлено, что селективность процесса и направленность реакций на образование трифенилсиланола резко возрастают при использовании смеси растворителей ТГФ и толуола в объемном соотношении от 1:3 до 3:1. Найдена возможность получать целевой продукт без выделения трифенилхлорсилана из продуктов реакции путем простой обработки реакционной массы водой с последующим разделением водного и органического слоев, концентрированием органической фазы и отделением путем фильтрации трифенилсиланола необходимой степени чистоты (98-99%). Это характеризует предлагаемый способ как новый и промышленно применимый.
Технический результат от использования смеси растворителей ТГФ и толуола оказался неожиданным и неочевидным, что позволяет отнести способ к числу процессов обладающих изобретательским уровнем. В самом деле, замена части тетрагидрофурана на толуол должна была бы уменьшить глубину протекания реакции образования фенилмагнийхлорида и селективность процесса конденсации фенилмагнийхлорида с хлорсиланом (могло оставаться значительное количество непрореагировавшего дифенилдихлорсилана и фенилтрихлорсилана). В нашем случае, наоборот, наблюдается увеличение селективности процесса как в первой, так и во второй реакциях.
Предлагаемый способ может быть проиллюстрирован следующими примерами.
Пример 1. В реакционный прибор, состоящий из 2-литровой четырехгорлой колбы, снабженной обратным холодильником, термометром, капельной воронкой для подачи хлорбензола и мешалкой, загружают 48,6 г (2 г-моля) магниевой стружки, 100 мл смеси ТГФ и толуола (50:50) и 10 г хлорбензола. Инициируют реакцию прибавлением 1 мл 1,2-дибромэтана при этом температура реакционной массы возрастает до 50-60oC. После инициирования начинают перемешивание и одновременно подачу из капельной воронки смеси 215 г хлорбензола, 200 мл толуола и 200 мл ТГФ. Подачу смеси ведут с такой скоростью, чтобы температура в реакционной колбе держалась на уровне 60-70oC. Процесс проводится до полного растворения магния и понижения температуры в колбе до 25-30oC. К образовавшемуся раствору фенилмагнийхлорида из капельной воронки приливают 500 г (2 г-моля) дифенилдихлорсилана, не допуская повышения температуры в колбе выше 70oC. После прибавления всего дифенилдихлорсилана реакционную массу выдерживают при температуре окружающей среды в течение 6 часов и обрабатывают водой. Водный слой отделяют. От органического слоя отгоняют часть растворителей (около 50%), остаток охлаждают и отфильтровывают выпавший трифенилсиланол. Получено 520 г (94,2% от теоретич.) трифенилсиланола чистотой 98,3%.
Пример 2. В реакционный прибор, состоящий из 2-литровой четырехгорлой колбы, снабженной обратным холодильником, термометром, капельной воронкой для подачи хлорбензола и мешалкой, загружают 48,6 г (2 г-моля) магниевой стружки, 100 мл смеси ТГФ и толуола (50:50) и 10 г хлорбензола. Инициируют реакцию прибавлением 1 мл 1,2-дибромэтана; при этом температура реакционной массы возрастает до 50-60oC. После инициирования начинают перемешивание и одновременно подачу из капельной воронки смеси 215 г хлорбензола, 200 мл толуола и 200 мл ТГФ. Подачу смеси ведут с такой скоростью, чтобы температура в реакционной колбе держалась на уровне 60-70oC. Процесс проводится до полного растворения магния и понижения температуры в колбе до 25-30oC. К образовавшемуся раствору фенилмагнийхлорида из капельной воронки приливают 212 г (1 г-моль) фенилтрихлорсилана, не допуская повышения температуры в колбе выше 70oC. После прибавления всего дифенилдихлорсилана реакционную массу выдерживаниют при температуре окружающей среды в течение 6 часов и обрабатывают водой. Водный слой отделяют. От органического слоя отгоняют часть растворителей (около 50%), остаток охлаждают и отфильтровывают выпавший трифенилсиланол. Получено 235 г (85,1% от теоретич.) трифенилсиланола. Чистота продукта 99%.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОЛУЧЕНИЯ НЕНАСЫЩЕННЫХ ОРГАНОМАГНИЙХЛОРИДОВ | 1997 |
|
RU2116310C1 |
ПРОЦЕСС ГРИНЬЯРА С УВЕЛИЧЕННЫМИ ВЫХОДАМИ ДИФЕНИЛХЛОРСИЛАНОВ В КАЧЕСТВЕ ПРОДУКТОВ | 2004 |
|
RU2345084C2 |
Способ стабилизации тетрагидрофурана для магнийорганического синтеза | 1986 |
|
SU1366515A1 |
СПОСОБ ПОЛУЧЕНИЯ БИС(ТРИФЕНИЛСИЛИЛ)ХРОМАТА | 1998 |
|
RU2139882C1 |
СПОСОБ ГРИНЬЯРА С ПОВЫШЕННЫМ СОДЕРЖАНИЕМ ДИФЕНИЛХЛОРСИЛАНОВ | 2004 |
|
RU2354660C2 |
Способ получения фенилгидридсиланов | 1980 |
|
SU943241A1 |
СПОСОБ ПОЛУЧЕНИЯ ФЕНИЛХЛОРГЕРМАНОВ | 2003 |
|
RU2237064C1 |
СПОСОБ ПОЛУЧЕНИЯ КРЕМНИЙОРГАНИЧЕСКОГО ЛАКА | 1967 |
|
SU197177A1 |
СПОСОБ ПОЛУЧЕНИЯ ЧИСТОГО ДЕКАФЕНИЛЦИКЛОПЕНТАСИЛАНА | 2009 |
|
RU2400485C1 |
СПОСОБ ПОЛУЧЕНИЯ СИММЕТРИЧНЫХ МЕТИЛФЕНИЛДИСИЛОКСАНОВ И ГЕКСАФЕНИЛДИСИЛОКСАНА ДЕГИДРОКОНДЕНСАЦИЕЙ ТРИОРГАНОСИЛАНОВ | 2018 |
|
RU2687736C1 |
Описывается способ получения трифенилсиланола, заключающийся в том, что фенилхлорсилан подвергают взаимодействию с фенилмагнийхлоридом в смеси тетрагидрофурана и толуола и реакционную массу обрабатывают водой в среде тех же растворителей с последующим выделением целевого продукта, при этом тетрагидрофуран и толуол берут в объемном соотношении от 1 : 3 до 3 : 1 соответственно. Техническим результатом является возможность получать целевой продукт без выделения трифенилхлорсилана из реакционной среды с последующей обработкой водой и выделением конечного продукта, а также использование смеси растворителей, что приводит к увеличению селективности процесса. 1 табл.
Способ получения трифенилсиланола по реакции между фенилхлорсиланом и водой в органическом растворителе, отличающийся тем, что фенилхлорсилан подвергают взаимодействию с фенилмагнийхлоридом в смеси тетрагидрофурана и толуола и реакционную массу обрабатывают водой в среде тех же растворителей с последующим выделением целевого продукта, при этом тетрагидрофуран и толуол берут в объемном соотношении от 1:3 до 3:1 соответственно.
НАЗАРОВА Д.В | |||
и др | |||
Металлоорганические компоненты катализаторов | |||
- НИИТЭХИМ, 1986, с | |||
Транспортер для перевозки товарных вагонов по трамвайным путям | 1919 |
|
SU102A1 |
HENRY GYLMAN и др | |||
Scission of the Silicon-Silicon Bond in Halogenated Polysilanes by Organometallic Reagents | |||
- "THE JOURNAL OF ORGANIC CHEMISTRY", 1959, v.24, p | |||
Съемная ручка для утюгов | 1925 |
|
SU1588A1 |
БАЖАНТ В | |||
и др | |||
Силиконы | |||
- М.: Государственное научно-техническое издательство химической литературы, 1960, с.99. |
Авторы
Даты
2001-09-27—Публикация
1999-12-03—Подача