СПОСОБ РЕГЕНЕРАЦИИ ОТРАБОТАННЫХ ЭЛЕКТРОЛИТОВ ПОЛИРОВАНИЯ И ТРАВЛЕНИЯ ХРОМСОДЕРЖАЩИХ СТАЛЕЙ Российский патент 2001 года по МПК C23F1/46 C23G1/36 

Описание патента на изобретение RU2175025C1

Изобретение относится к области регенерации высококонцентрированных кислых электролитов и может быть использовано для селективного извлечения ионов железа (Fe2+, Fe3+) и хрома (Cr3+, Cr6+) в гальванических производствах, в частности, растворов химического и электрохимического травления и полирования хромсодержащих сталей.

Основная причина ухудшения качества полирования - накопление ионов железа в электролите.

Известен способ электрохимической регенерации полировочных и травильных растворов, в частности, методом электродиализа (Федотьев Н.П., Грилихес С.Я. Электрохимическое травление, полирование и оксидирование металлов. Л.: Машгиз, 1957, с. 97-101). Однако, этот способ обладает рядом недостатков, к основным из которых относятся следующие:
1). Низкая степень извлечения железа (менее 30%).

2). Необходимость упаривания раствора.

3). Высокий удельный расход электроэнергии.

Известен также способ очистки кислых электролитов и сточных вод от ионов хрома за счет обработки природными сорбентами - цеолитами (Патент 2051112, Россия, МКИ6 С 02 F 28. Способ очистки сточных вод oт ионов тяжелых металлов и шестивалентного хрома. Непряхин А.Е., Садыкова Н.П., Чайкин В.К., опубл. 27.12.95, Бюл. N 36). Этот способ позволяет повысить степень извлечения ионов железа и хрома, снизить себестоимость процесса, при этом не требуется затрат электроэнергии. Однако, эти сорбенты достаточно дороги, т.к. в процессе их производства применяются сложные технологические операции (обжиг, гранулирование и т.п.). Кроме того, возникают трудности с дальнейшей утилизацией отработанных сорбентов.

Наиболее близким по технической сущности к предлагаемому изобретению, выбранным авторами в качестве прототипа, является способ электрохимической регенерации растворов травления и полирования, основанный на восстановлении ионов железа Fe3+ до Fe2+ и хрома Cr6+ до Cr3+ и отделении осадка малорастворимого в кислых электролитах сульфата железа (II) (Кочергин В.П., Артемова В.А., Самойлова Л.И. /Электрохимическая регенерация отработанных полировочных растворов с применением ионообменных диафрагм //Труды Воронежского Университета, 1968, вып.2, с. 55-57).

Однако использование этою способа в широкой практике гальванического и других электрохимических производств имеет ряд недостатков:
1). Восстановление ионов железа Fe3+ до Fe2+ требует предварительного восстановления ионов хрома Cr6+ до Cr3+.

2). Использование ионообменных диафрагм.

3). Высокий удельный расход электроэнергии на выделение железа в виде малорастворимого соединения.

Задача изобретения - создание эффективного способа регенерации кислых электролитов полирования и травления хромсодержащих сталей с селективным разделением продуктов их растворения - ионов железа и хрома.

Технический результат - расширение технологических возможностей способа за счет повышения степени очистки регенерируемых электролитов и селективности извлечения ценных компонентов, а также экономии электроэнергии.

Указанный результат достигается тем, что в способе регенерации отработанных электролитов полирования и травления хромсодержащих сталей, включающем стадию электрохимического восстановления ионов железа (III) до железа (II), получение и отделение осадка сульфата железа (II), вводят предварительную стадию сорбционного извлечения ионов хрома (VI) и хрома (III) из раствора хитозаном с образованием хелатных комплексов хитозана с ионами хрома, удаляемых из электролита при его пропускании через слой кислотоустойчивого полимера, после чего проводят электрохимическое восстановление ионов железа (III) до железа (II), затем вводят в электролит добавку сульфата калия в количестве 0,05-0,25 моль/л перед отделением электролита от образующегося осадка моногидрата сульфата железа (II).

Способ осуществляют следующим образом: отработанный кислый электролит полирования или травления хромсодержащих сталей, содержащий ионы железа (Fe3+, Fe2+) и хрома (Cr6+, Cr3+), из гальванической ванны подают в осветлитель, где охлаждают и отделяют от взвешенных частиц. Осветленный раствор направляют в сорбционную колонну с хитозаном, а затем пропускают через емкость, заполненную твердым кислотоустойчивым полимером. Далее производят катодное восстановление ионов железа Fe3+ до Fe2+ в электролизере-регенераторе, после чего в раствор добавляют мелкокристаллический сульфат калия в количестве 0.05-0.25 моль/л и направляют в кристаллизатор для отделения осадка моногидрата сульфата железа (II). При добавлении в регенерируемый раствор мелкокристаллического сульфата калия в количестве менее 0.05 моль/л требуемая степень извлечения ионов железа (II) не достигается. Добавление сульфата калия в количествах свыше 0.25 моль/л экономически нецелесообразно, т. к. не приводит к дальнейшему повышению степени очистки раствора. В качестве кислотоустойчивого твердого полимера используют полиэтилен, полипропилен, полистирол, предварительно обработанные в серно-хромовокислой смеси при температуре 60-70oC.

Достигаемый эффект обусловлен полным сорбционным извлечением ионов хрома (VI) и хрома (III) из раствора с применением хитозана и кислотоустойчивого твердого полимера, электрохимическим восстановлением ионов железа (III) до железа (II), а на стадии отделения осадка моногидрата сульфата железа - повышением степени осаждения моногидрата сульфата железа при дозированном введении мелкокристаллического сульфата калия.

Предлагаемый способ регенерации кислых электролитов полирования и травления хромистых сталей может быть представлен тремя стадиями:
1) полное сорбционное извлечение ионов хрома (Cr6+ и Cr3+) с применением хитозана и кислотоустойчивого твердого полимера;
2) катодное восстановление ионов железа Fe3+ до Fe2+ в электролизере-регенераторе диафрагменного типа;
3) осаждение моногидрата сульфата железа (II) при добавлении сульфата калия.

Пример 1 осуществления способа: отработанный кислый электролит полирования хромсодержащей стали 30Х13 состава 950 г/л H2SO4 и 750 г/л H2PO4, содержащий ионы тяжелых металлов (ИТМ) железа (Fe3+, Fe2+) и хрома (Cr6+, Cr3+), направляли в осветлитель, где охлаждали до температуры 18-20oC и после отстаивания отделяли от взвешенных частиц. Осветленный раствор пропускали через первую сорбционную колонну с хитозаном со скоростью 1 литр в час, затем фильтровали через вторую сорбционную колонну, заполненную гранулированным полипропиленом с диаметром гранул 5 мм, предварительно обработанным в серно-хромовокислой смеси при температуре 60oC.

Очищенный от ионов хрома электролит направляли в электролизер-регенератор, где осуществляли катодное восстановление ионов железа Fe3+ до Fe2+ при катодной плотности тока 12 А/дм2 в течение 8 часов. Затем в раствор добавляли мелкокристаллический сульфат калия в количестве 0,05 моль/л и охлаждали до температуры -15oC, после чего отделяли от осадка моногидрата сульфата железа (II).

Степень извлечения ионов железа и хрома определяли по формуле:
η = (Ciисх

- Ciкон
)/Ciисх
* 100% ,
где Cисхi, Cконi - концентрация ионов i-го металла в растворе до и после очистки соответственно.

Примеры 2-5 проводили аналогично примеру 1, пример 6 - согласно прототипу; данные по степени извлечения ионов металлов приведены в таблице.

Таким образом, сочетание сорбционной обработки кислых сред хитозаном с последующим удалением из раствора образующихся хелатных комплексов твердым полимером и электрохимической регенерации раствора с осаждением осадка малорастворимого моногидрата сульфата железа при дозированном введении мелкокристаллического сульфата калия позволяет повысить степень извлечения ионов железа (II), железа (III) до 92% и 80% соответственно, хрома (III) и хрома (VI) до 100% (в прототипе степень очистки по ионам железа (II), железа (III) составляет 57% и 72% соответственно, по ионам хрома очистка отсутствует); снизить затраты электроэнергии на стадии электрохимической регенерации, регенерировать высококонцентрированные растворы полирования и травления хромистых сталей без изменения pH среды, селективно извлекать продукты растворения стали, не загрязнять электролиты посторонними реагентами.

Результаты регенерации электролитов полирования хромсодержащих сталей даны в таблице.

Похожие патенты RU2175025C1

название год авторы номер документа
СПОСОБ УДАЛЕНИЯ ИОНОВ МНОГОВАЛЕНТНЫХ МЕТАЛЛОВ ИЗ КИСЛЫХ ВОДНЫХ СРЕД 1999
  • Федорова Е.А.
  • Мельникова Г.Е.
  • Тишков К.Н.
  • Мельникова Н.Б.
  • Смирнова Л.А.
RU2154033C1
СПОСОБ РЕГЕНЕРАЦИИ ОТРАБОТАННЫХ РАСТВОРОВ, СОДЕРЖАЩИХ СЕРНУЮ КИСЛОТУ 1999
  • Элькинд К.М.
  • Тишков К.Н.
  • Смирнова В.М.
  • Трунова И.Г.
  • Кондрашев П.Ю.
RU2149221C1
СПОСОБ УТИЛИЗАЦИИ ОСАДКОВ СТОЧНЫХ ВОД СТАНЦИЙ БИОЛОГИЧЕСКОЙ ОЧИСТКИ 1996
  • Элькинд К.М.
  • Торунова М.Н.
  • Тишков К.Н.
  • Дубровин А.М.
  • Логинов Н.В.
RU2109696C1
СПОСОБ ОЧИСТКИ СТОЧНЫХ ВОД ЭЛЕКТРОХИМИЧЕСКИМИ МЕТОДАМИ 2006
  • Назаров Владимир Дмитриевич
  • Назаров Максим Владимирович
RU2340562C2
СПОСОБ ПЕРЕРАБОТКИ ШЛАМОВ ГАЛЬВАНИЧЕСКИХ ПРОИЗВОДСТВ 2000
  • Элькинд К.М.
  • Смирнова В.М.
  • Тишков К.Н.
  • Трунова И.Г.
  • Кондрашев П.Ю.
RU2170276C1
СПОСОБ ПОЛУЧЕНИЯ ОРГАНОМИНЕРАЛЬНОГО УДОБРЕНИЯ ИЗ ОСАДКОВ СТОЧНЫХ ВОД 1998
  • Элькинд К.М.
  • Трунова И.Г.
  • Смирнова В.М.
  • Тишков К.Н.
  • Дзиминскас Ч.А.
RU2142930C1
СПОСОБ ИОНООБМЕННОЙ ОЧИСТКИ СТОЧНОЙ ВОДЫ ОТ ИОНОВ МЕТАЛЛОВ 2011
  • Дербишер Евгения Вячеславовна
  • Овдиенко Елена Николаевна
  • Дербишер Вячеслав Евгеньевич
  • Габитов Руслан Идрисович
  • Черткова Майя Владимировна
RU2470877C1
СПОСОБ РЕГЕНЕРАЦИИ ЖЕЛЕЗО-МЕДНО-ХЛОРИДНОГО ТРАВИЛЬНОГО РАСТВОРА 1998
  • Бондаренко А.В.
  • Найден В.В.
  • Калайда И.Н.
  • Козловцева И.Н.
RU2132408C1
СПОСОБ ОЧИСТКИ СТОЧНЫХ ВОД ОТ ИОНОВ ХРОМА (III) 2009
  • Мальцева Валентина Стефановна
  • Будыкина Татьяна Алексеевна
RU2424192C1
СПОСОБ РЕГЕНЕРАЦИИ ЭЛЕКТРОЛИТА ДЛЯ АНОДНОЙ ПОДГОТОВКИ ДЕТАЛЕЙ НА ОСНОВЕ ЖЕЛЕЗА К ЖЕЛЕЗНЕНИЮ 2006
  • Ивашкин Юрий Александрович
  • Голубчик Евгений Маркович
  • Катюрина Ольга Юрьевна
RU2334834C1

Иллюстрации к изобретению RU 2 175 025 C1

Реферат патента 2001 года СПОСОБ РЕГЕНЕРАЦИИ ОТРАБОТАННЫХ ЭЛЕКТРОЛИТОВ ПОЛИРОВАНИЯ И ТРАВЛЕНИЯ ХРОМСОДЕРЖАЩИХ СТАЛЕЙ

Изобретение относится к области регенерации высококонцентрированных кислых электролитов и может быть использовано для селективного извлечения ионов железа (Fe2+, Fe3+) и хрома (Cr3+, Cr6+) в гальванических производствах, в частности, растворов химического и электрохимического травления хромсодержащих сталей. В способе регенерации отработанных кислых растворов полирования и травления хромсодержащих сталей после отделения механических примесей для отделения от ионов хрома (Cr3+, Cr6+) проводят сорбционную очистку хитозаном, затем пропускают раствор через емкость с кислотоустойчивым полимером, предварительно обработанным в серно-хромовокислой смеси. Далее для извлечения ионов железа (Fe2+, Fe3+) раствор подвергают электрохимической обработке, заключающейся в катодном восстановлении железа Fe3+ до Fe2+ с последующим осаждением малорастворимого моногидрата сульфата железа при введении мелкокристаллического сульфата калия в количестве 0,05 - 0,25 моль/л и охлаждении. В качестве кислотоустойчивого твердого полимера используют полиэтилен, полипропилен, полистирол, их сополимеры. Технический результат от использования изобретения заключается в повышении эффективности очистки высококонцентрированных кислых электролитов, снижении затрат электроэнергии, в возможности разделения продуктов растворения хромсодержащих сталей. 1 табл.

Формула изобретения RU 2 175 025 C1

Способ регенерации отработанных электролитов полирования и травления хромсодержащих сталей, включающий стадию электрохимического восстановления ионов железа (III) до железа (II) и получение и отделение осадка моногидрата сульфата железа (II), отличающийся тем, что он включает предварительную стадию сорбционного извлечения ионов хрома (VI) и хрома (III) из электролита с применением хитозана и кислотоустойчивого твердого полимера, а осадок моногидрата сульфата железа (II) получают путем введения в электролит мелкокристаллический сульфат калия в количестве 0,05 - 0,25 моль/л.

Документы, цитированные в отчете о поиске Патент 2001 года RU2175025C1

КОЧЕРГИН В.П
и др
Электрохимическая регенерация отработанных полировочных растворов с применением ионообменных диафрагм
Труды Воронежского Университета, 1968, вып
Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1
Приспособление для разматывания лент с семенами при укладке их в почву 1922
  • Киселев Ф.И.
SU56A1
Способ регенегарции отработанных кислотных растворов для травления стали 1989
  • Симонова Наталия Михайловна
  • Касьян Виктор Аршалуисович
  • Кошелева Татьяна Витальевна
SU1696587A1
ОЧИСТКИ ВНУТРЕННЕЙ ПОВЕРХНОСТИ ТРУБ 0
SU246269A1
Способ травления сталей серной кислотой 1939
  • Белопольский А.П.
SU57588A1
Прибор для очистки паром от сажи дымогарных трубок в паровозных котлах 1913
  • Евстафьев Ф.Ф.
SU95A1
Парнороликовая машина 1978
  • Михайлик Анатолий Петрович
  • Фуга Георгий Прокофьевич
  • Крылов Глеб Леонидович
SU795628A1
US 3575711 A, 20.04.1971
ВЫКАПЫВАЮЩИЙ РАБОЧИЙ ОРГАН КОРНЕКЛУБНЕУБОРОЧНОЙ МАШИНЫ 1991
  • Примоченко Анатолий Ильич
RU2036573C1

RU 2 175 025 C1

Авторы

Федорова Е.А.

Бакаев В.В.

Исаев В.В.

Мельникова Г.Е.

Тишков К.Н.

Даты

2001-10-20Публикация

2000-02-15Подача