СПОСОБ ФОРМООБРАЗОВАНИЯ МНОГОЗАХОДНОЙ СПИРАЛЬНОЙ ВОГНУТО-ВЫПУКЛОЙ ПОВЕРХНОСТИ ТЕПЛООБМЕННЫХ ТРУБ Российский патент 2002 года по МПК B21H3/12 

Описание патента на изобретение RU2179085C2

Изобретение относится к области обработки металлов давлением и может быть использовано при изготовлении трубчатых изделий со спиральным профилем, в частности труб конвективного теплообмена теплообменных аппаратов различного назначения.

Известен способ и устройство для формообразования винтовых поверхностей свободно вращающимися роликами, повернутыми на угол подъема винтовой поверхности при осевой подаче заготовки (см. И.И. Семченко, В.М. Матюшин, Г.Н. Сахаров. Проектирование металлорежущих инструментов.- М.: Гос. научно-техническое издательство машиностроительной литературы, 1963, с. 627-646, рис. 375,376).

Недостатком известного способа является невозможность формообразования многозаходных спиральных поверхностей различного шага и формы профиля.

Известен способ изготовления винтовых поверхностей на трубчатых заготовках, при котором осуществляют формообразование n-заходной поверхности винтового профиля при осуществлении взаимосвязанного поступательного перемещения тел качения (давильных инструментов) вдоль трубы и ее постоянном вращении с оправкой, в качестве которой используют оправку с формой обрабатываемого профиля (патент РФ N 2121405 C1, В 21 D 15/04, БИ N 31 от 10.11.98).

Недостатком известного способа является то, что для формирования отличающихся по шагу и профилю винтовых профилей требуется комплект специальных оправок, а также то, что предлагаемый способ не позволяет осуществлять одновременное формообразование разнонаправленных винтовых канавок.

Наиболее близким по техническому решению к заявляемому является патент РФ N 2076786 от 10.04.97, Бюл. N 10, согласно которому прокатка изделий с многозаходной спиральной поверхностью осуществляется головкой свободно вращающимися дисковыми давильными роликами, расположенными под углом α к оси трубной заготовки, имеющей осевую и оборотную подачи.

Недостатком известного технического решения является невозможность одновременной прокатки многозаходных спиральных поверхностей прямого и противоположного направления.

Целью изобретения является формообразование в процессе прокатки на трубной заготовке многозаходной спиральной поверхности теплообмена дополнительных прерывистых спирально расположенных поверхностей противоположного направления, обеспечивающих увеличение поверхности теплообмена, повышение интенсивности турбулентного перемещения потоков теплоносителя как внутри трубы, так и среды, обтекающей снаружи выпукло-вогнутые разнонаправленные и спиральные поверхности.

Для достижения поставленной цели в способе формообразования многозаходной спиральной вогнуто-выпуклой поверхности теплообменных труб, включающем прокатку трубной заготовки путем осевой подачи и вращения между свободно вращающимися дисковыми давильными роликами, расположенными под углом α к продольной заготовки, согласно изобретению:
на полученных выпуклых спиральных поверхностях дополнительно формообразуют многозаходные прерывистые спиральные поверхности с глубиной профиля 0,3 - 0,5 глубины профиля многозаходной вогнуто-выпуклой спиральной поверхности путем прохождения через дополнительные дисковые давильные ролики, расположенные под углом β = 90°-α к продольной оси заготовки и установленные в поворотной обойме с возможностью вращения в направлении, противоположном направлению вращения трубной заготовки;
многозаходные прерывистые спиральные поверхности формообразуют с шагом спирали, отличным от шага спирали многозаходной спиральной вогнуто-выпуклой поверхности;
многозаходные прерывистые спиральные поверхности формообразуют с разными шагами спирали по длине трубной заготовки путем циклического изменения частоты вращения поворотной обоймы.

Прокатка на теплообменных трубах с многозаходными вогнуто-выпуклыми спиральными поверхностями дополнительных прерывистых поверхностей противоположного профиля глубиной, составляющей 0,3 - 0,5 глубины профиля спирали противоположного направления, и с разными шагами спирали и их прерывистое расположение по длине трубы обеспечивает существенное повышение поверхности теплообмена, повышение интенсивности турбулентного перемешивания потоков теплоносителя как внутри трубы, так и теплообменной среды, обтекающей снаружи.

Выбор глубины профиля в пределах 0,3...0,5 глубины спирали противоположного направления обуславливается требованиями минимизации уменьшения проходного сечения трубы конвективного теплообмена.

Угол β = 90°-α установочного разворота дисковых давильных роликов выбирается из условия получения минимальной ширины зева прерывистых поверхностей.

Осуществление предложенного технического решения в процессе прокатки на трубной заготовке спиральной поверхности дополнительными свободно вращающимися дисковыми давильными роликами, расположенными под углом β = 90°-α к продольной оси трубной заготовки и установленными с возможностью вращения в направлении, противоположном направлению вращения трубной заготовки, реализуется на прокатном оборудовании, а также с использованием специальных приспособлений на универсальном металлорежущем оборудовании, например, на станках токарной группы.

На фиг. 1, 1a и 1б приведена принципиальная схема устройства для исполнения технического решения по предложенному изобретению.

На фиг. 2 приведен образец трубного изделия с разнонаправленными винтовыми канавками с углами наклона α и β к продольной оси трубного изделия, с зонным расположением прерывистых спиральных поверхностей с различными шагами спирали.

Трубная заготовка 1 (фиг. 1), имеющая осевую подачу Soc от механизма гидроподачи 2 и вращение N, создаваемое от процесса формообразования спиральной поверхности свободно вращающимися дисковыми давильными роликами 3, расположенными под углом α к продольной оси трубной заготовки 1 и размещенными в неподвижной обойме 4, снабженной установочным механизмом радиальной подачи (на фиг. не представлен) дисковых давильных роликов 3 в трубную заготовку 1 на глубину спиральной поверхности H, проходит через вторую обойму 5 с бесступенчатым регулируемым числом оборотов от 0 до nоб, в которой размещены дисковые свободно вращающиеся давильные ролики 6, расположенные под углом β к продольной оси трубной заготовки 1 и имеющие возможность установочного радиального движения к оси и от оси трубной заготовки 1.

Механизм гидроподачи 2 состоит из гидроцилиндра 7, шток которого через упорный подшипник 8 и заглушку 9 соединен с передним концом трубной заготовки.

Формообразование прокаткой многозаходных спиральных вогнуто-выпуклых противоположно направленных поверхностей производят выполнением следующих технологических переходов, составляющих сущность предлагаемого способа.

Трубную заготовку 1 с наружным диаметром dтр вводят в неподвижную обойму 4, снабженную свободно вращающимися дисковыми давильными роликами 3, расположенными под углом α к продольной оси трубной заготовки, и с помощью механизма радиальной подачи дисковых давильных роликов радиально вдавливают дисковые давильные ролики 3 в трубную заготовку на глубину спиральной поверхности H, после чего трубной заготовке 1 сообщают осевую подачу от механизма гидроподачи 2. При осевой подаче Soc трубной заготовки свободно вращающиеся дисковые давильные ролики 3, установленные под углом α к продольной оси трубной заготовки, радиально вдавлены в металлоизделия на глубину формируемого профиля H, получают вращение под действием сил трения на поверхности взаимодействия с металлом трубной заготовки и сообщают ей вращательное движение N с формообразованием многозаходной спиральной поверхности.

Далее вращающаяся с частотой вращения N трубная заготовка 1 с прокатанной на ее поверхности многозаходной спиральной поверхностью с шагом спирали Т и глубиной профиля H проходит через поворотную обойму 5, располагающую самостоятельным приводом с бесступенчатым регулированием частоты вращения n (на фиг. не представлен), снабженную дисковыми давильными роликами 6, повернутыми на угол β = 90°-α к продольной оси трубной заготовки. При этом с помощью размещенного в поворотной обойме 5 установочного механизма (на фиг. не представлен) дисковые давильные ролики 6 вдавливают металл трубного изделия 1 по вершинам спиральной поверхности на глубину h= (0,3...0,5)H и при их вращении с обоймой 5 в противоположном направлении вращению трубного изделия 1 формообразуют многозаходную прерывистую спиральную поверхность с глубиной профиля h= (0,3. . . 0,5)H и с шагом 0...t, определяемую частотой вращения и поворотной обоймы 5 и частотой вращения трубного изделия.

Технико-экономическая эффективность предложенного технического решения заключается в повышении теплотехнических параметров теплообменных аппаратов за счет развитой поверхности теплообменных труб, что приводит к увеличению коэффициентов теплопередачи в условиях высокой интенсивности турбулентного перемешивания теплоносителя и нагреваемого тела и позволит разработать специализированные устройства по реализации предложенного технологического процесса.

Похожие патенты RU2179085C2

название год авторы номер документа
СПОСОБ ИЗГОТОВЛЕНИЯ ИЗДЕЛИЙ С ВНУТРЕННИМИ СПИРАЛЬНЫМИ РЕБРАМИ 1999
  • Агапитов В.А.
  • Деревянкин М.А.
  • Лосицкий А.Ф.
  • Проскурин Р.Д.
  • Филиппов В.Б.
  • Хрипунов Н.С.
  • Черемных Г.С.
RU2172223C2
СПОСОБ ИЗГОТОВЛЕНИЯ КРУТОИЗОГНУТЫХ ТРУБНЫХ ИЗДЕЛИЙ 2000
  • Сизов Е.С.
  • Бабурин М.А.
  • Сизов В.С.
  • Ершов А.Г.
RU2192324C2
УСТРОЙСТВО ДЛЯ ФОРМООБРАЗОВАНИЯ ЦИЛИНДРИЧЕСКИХ ОТБОРТОВОК ТИПА КРЫШКИ 2003
  • Кутин В.Н.
RU2253530C2
СПОСОБ ИЗГОТОВЛЕНИЯ СПИРАЛЬНО-ПРОФИЛЬНЫХ ТРУБ 2006
  • Лебедев Александр Николаевич
  • Красильник Леонид Родионович
  • Калабушкин Юрий Григорьевич
  • Вайцехович Сергей Михайлович
RU2329110C2
СОТОВЫЙ ТЕПЛООБМЕННИК С ЗАКРУТКОЙ ПОТОКА 2008
  • Вайцехович Сергей Михайлович
  • Лебедев Александр Николаевич
  • Лебедев Сергей Александрович
RU2386096C2
СПОСОБ ИЗГОТОВЛЕНИЯ ТЕПЛООБМЕННОЙ ТРУБЫ 2009
  • Мунябин Кирилл Леонидович
RU2382974C1
СПОСОБ ИЗГОТОВЛЕНИЯ ВИНТОВЫХ ДЕТАЛЕЙ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1995
  • Вильданов Р.И.
  • Бахтияров Н.А.
  • Евсеев Ю.М.
  • Евсеева И.И.
  • Брот А.Р.
  • Бершадский В.Б.
  • Нагибин И.Г.
  • Саар Л.Э.
  • Сметанин М.В.
  • Латыпов Р.Г.
RU2121405C1
СПОСОБ АВТОМАТИЧЕСКОЙ НАПЛАВКИ ПОД СЛОЕМ ФЛЮСА ИЗДЕЛИЙ 1999
  • Перегудин П.Б.
  • Перегудин С.Б.
  • Перегудин Б.П.
RU2163183C1
НАКАТНАЯ ГОЛОВКА 1995
  • Хованов Н.Н.
  • Черный А.П.
  • Веялков А.К.
  • Лычагин В.Р.
RU2076786C1
МНОГОФУНКЦИОНАЛЬНОЕ КОМБИНИРОВАННОЕ ПОЧВООБРАБАТЫВАЮЩЕЕ ОРУДИЕ 2009
  • Геер Владимир Альбертович
RU2408176C2

Иллюстрации к изобретению RU 2 179 085 C2

Реферат патента 2002 года СПОСОБ ФОРМООБРАЗОВАНИЯ МНОГОЗАХОДНОЙ СПИРАЛЬНОЙ ВОГНУТО-ВЫПУКЛОЙ ПОВЕРХНОСТИ ТЕПЛООБМЕННЫХ ТРУБ

Изобретение относится к области обработки металлов давлением и может найти применение при изготовлении трубчатых изделий со спиральным профилем теплообменных аппаратов различного назначения. Прокатку осуществляют путем осевой подачи и трубной заготовки между свободно вращающимися дисковыми давильными роликами, расположенными под углом α к продольной оси заготовки. На полученных выпуклых спиральных поверхностях дополнительно формообразуют многозаходные прерывистые спиральные поверхности с глубиной профиля, составляющей 0,3-0,5 глубины профиля многозаходной вогнуто-выпуклой спиральной поверхности. Для этого трубную заготовку пропускают через дополнительные дисковые давильные ролики, расположенные под углом β = 90°-α к продольной оси заготовки и установленные в поворотной обойме с возможностью вращения в направлении, противоположном направлению вращения трубной заготовки. Возможно формообразование трубной заготовки с шагом спирали, отличным от шага спирали многозаходной спиральной вогнуто-выпуклой поверхности, или с разными шагами спирали по длине трубной заготовки путем циклического изменения частоты вращения поворотной обоймы. Такая технология позволяет повысить теплотехнические параметры теплообменных аппаратов за счет получения развитой поверхности труб, что приводит к увеличению коэффициента теплопередачи в условиях высокой интенсивности турбулентного перемешивания теплоносителя. 2 з. п. ф-лы, 2 ил.

Формула изобретения RU 2 179 085 C2

1. Способ формообразования многозаходной спиральной вогнуто-выпуклой поверхности теплообменных труб, включающий прокатку трубной заготовки путем осевой подачи и вращения между свободно вращающимися дисковыми давильными роликами, расположенными под углом α к продольной оси заготовки, отличающийся тем, что на полученных выпуклых спиральных поверхностях дополнительно формообразуют многозаходные прерывистые спиральные поверхности с глубиной профиля, составляющей 0,3-0,5 глубины профиля многозаходной вогнуто-выпуклой спиральной поверхности, путем прохождения через дополнительные дисковые давильные ролики, расположенные под углом β = 90°-α к продольной оси заготовки и установленные в поворотной обойме с возможностью вращения в направлении, противоположном направлению вращения трубной заготовки. 2. Способ по п. 1, отличающийся тем, что многозаходные прерывистые спиральные поверхности формообразуют с шагом спирали, отличным от шага спирали многозаходной спиральной вогнуто-выпуклой поверхности. 3. Способ по п. 1, отличающийся тем, что многозаходные прерывистые спиральные поверхности формообразуют с разными шагами спирали по длине трубной заготовки путем циклического изменения частоты вращения поворотной обоймы.

Документы, цитированные в отчете о поиске Патент 2002 года RU2179085C2

НАКАТНАЯ ГОЛОВКА 1995
  • Хованов Н.Н.
  • Черный А.П.
  • Веялков А.К.
  • Лычагин В.Р.
RU2076786C1
СПОСОБ ИЗГОТОВЛЕНИЯ ВИНТОВЫХ ДЕТАЛЕЙ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1995
  • Вильданов Р.И.
  • Бахтияров Н.А.
  • Евсеев Ю.М.
  • Евсеева И.И.
  • Брот А.Р.
  • Бершадский В.Б.
  • Нагибин И.Г.
  • Саар Л.Э.
  • Сметанин М.В.
  • Латыпов Р.Г.
RU2121405C1
РЕЗЬБОНАКАТНАЯ ГОЛОВКА 1995
  • Киричек Андрей Викторович
  • Кульков Иван Борисович
RU2098213C1
СПОСОБ ПРОКАТКИ ПРОФИЛЕЙ 1996
  • Гайдабура В.В.
RU2112621C1
RU 2058847 C1, 27.04.1996
УСТРОЙСТВО ДЛЯ ИЗГОТОВЛЕНИЯ ТРУБ С МНОГОЗАХОДНЫМИ ВИНТОВЫМИ ГОФРАМИ 1991
  • Кузько Юрий Петрович
  • Мишулин Аристоник Александрович
  • Видяйкин Алексей Юрьевич
  • Мальков Олег Львович
  • Кузько Оксана Юрьевна
RU2050213C1

RU 2 179 085 C2

Авторы

Островский В.М.

Петриков С.А.

Хованов Н.Н.

Черный А.П.

Цымбал Э.А.

Даты

2002-02-10Публикация

1999-10-01Подача