УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ МЕТАЛЛИЧЕСКИХ ПОРОШКОВ Российский патент 2002 года по МПК B22F9/08 

Описание патента на изобретение RU2183534C2

Изобретение относится к порошковой металлургии, а именно к устройствам для получения металлических порошков путем распыления струи расплава потоком газа, и может быть использовано для производства порошков из расплавов алюминия, бронзы, цинка.

Известны устройства для получения металлических порошков, содержащие резервуар для жидкого металла, закрытую камеру, форсунку с кольцевой полостью и соплом для распыления расплава неактивной средой [1, 2]. С помощью этих устройств удается повысить выход годного продукта, получить порошок с определенными свойствами или с определенной концентрацией специального газа, но использовать для получения порошков с размерами частиц менее 40 мкм не целесообразно ввиду малого выхода годного продукта, который составляет всего 15-20%.

Наиболее близким к предлагаемому устройству является устройство, содержащее металллоприемник, форсунку с кольцевой полостью подвода энергоносителя и двумя рабочими соплами, а также камеру распыления с охлаждающей жидкостью [3] . Данное устройство позволяет получать порошки фракции 50 мкм с выходом порядка 85%, а выход фракции менее 50 мкм незначителен. Кроме того, в указанных выше устройствах расплавленный металл из металлоприемника поступает в зону действия потока энергоносителя в виде струи преимущественно под действием сил тяжести и мало зависит от расхода распыляющего агента. Нет пропорциональной зависимости между расходными массами жидкого металла и распыляющего агента, что отрицательно сказывается на качестве распыления и фракциях порошка. Кроме того, во всех указанных устройствах металлический порошок не классифицируется по фракциям.

Задачей настоящего изобретения является повышение эффективности диспергирования струи расплава, увеличение выхода мелкодисперсной фракции порошка, разделение порошка по фракциям. Технический результат заключается в стабилизации параметров и фракционного состава порошка. Для достижения этого технического результата устройство для получения металлических порошков, содержащее металлоприемник, рабочую форсунку с кольцевой полостью подвода энергоносителя и двумя рабочими соплами, камеру распыления, снабженную каналами охлаждения для охлаждающей жидкости, снабжено дополнительной форсункой цилиндрической формы с резьбовым концом у одного основания и внешним конусом у другого. Дополнительная форсунка размещена соосно в корпусе и диафрагме рабочей форсунки с возможностью осевого перемещения и имеет камеру параболической формы с радиальными отверстиями ввода энергоносителя и сужающимся к низу критическим сечением, а также имеет камеру распыления конической формы.

Металлоприемник выполнен в виде полого усеченного конуса и размещен в параболической камере с возможностью осевой регулировки и образует с критическим сечением кольцевое сопло, при этом дополнительная форсунка герметично соединена с металлоприемником трубопроводом подвода расплава и прикреплена к корпусу рабочей форсунки. Кроме того, предлагаемое устройство снабжено классификатором.

На чертеже представлено устройство, его продольный разрез.

Устройство для получения металлических порошков содержит тигель 1, трубопровод подачи расплава 2, металлоприемник 4, который выполнен в виде полого усеченного конуса с цилиндрическим отверстием 5 при вершине и состыкован соосно через регулировочную шайбу 6 с дополнительной форсункой 7 и трубопроводом 2, жестко закреплен с ними к корпусу 8 фланцем 9. Дополнительная форсунка 7 цилиндрической формы с резьбовым концом у одного основания и внешним конусом у другого, вмонтированная в корпус 8 с возможностью осевого перемещения гайкой 10, также содержит расположенные последовательно две соосные камеры 11 и 12, которые составляют сопло Лаваля. Камера 11 параболической формы сужается до критического сечения, а затем плавно переходит в камеру 12 конической формы с углом расширения α = 12-14o. Металлоприемник 4 соосно состыкован с камерой 11, а его вершина - с отверстием 5, размещенным в критическом сечении, и своей поверхностью образует с поверхностью критического сечения кольцевое сопло 13, которое совместно с камерами 11 и 12 формирует рабочий поток энергоносителя первого каскада распыления расплава, а кольцевое сопло 14, концентрично расположенное относительно камеры 12 и образованное поверхностями внешнего конуса дополнительной форсунки 7 и диафрагмой 15, состыкованной с корпусом 8, образуют рабочую форсунку второго каскада распыления расплава в камеру 17, которая является как бы продолжением камеры 12 и содержит кольцевой коллектор подвода жидкости 18 с каналами охлаждения 19 по всему периметру. Резервуар 16 заполнен до определенного уровня жидкостью 20 и соединен трубопроводом 21 с гидроклассификатором 22, который содержит разделительную колонну, сита, центрифуги для отделения порошка от жидкости и другие узлы. Подвод энергоносителя к устройству осуществляется через отверстие 23 в полость 24, откуда он подается на рабочие сопла.

Устройство работает следующим образом.

Через отверстие 23 в полость 24 подают под высоким давлением энергоноситель, откуда он поступает к рабочему соплу 14, а через канал 25 - к соплу 13 и в камеру 11. Пройдя рабочие сопла, энергоноситель в виде конических потоков с большой скоростью поступает в камеры 12 и 17. Рабочие сопла 13 и 14 и камеры 11, 12 и 17 формируют рабочие потоки энергоносителя с заданными характеристиками. Большие скорости энергоносителя обеспечивают необходимый эжекционный эффект в зоне отверстия 5 металлоприемника. Под действием эжекционных сил расплавленный металл 3 из тигля 1 по трубопроводу 2 поступает в металлоприемник 4 и далее через отверстие 5 в виде струи поступает в зону действия потока энергоносителя, сформированного камерой 11, соплом 13 и камерой 12, в зону первого каскада распыления. Здесь происходит разрушение струи металла на первичные капли при сниженном эффекте коагуляции капель расплава. Аэродинамическим потоком последние разгоняются в камере 12 до сверхзвуковых скоростей и уносятся в зону второго каскада распыления, в зону действия сопла 14, где происходит вторичное дробление металлических капель до заданного минимального размера. После этого продукты распыла поступают в мелкодисперсный поток жидкости, которая подается в коллектор 18 и каналы охлаждения 19 одновременно с подачей энергоносителя в отверстие 23, где предварительно охлаждаются, а затем попадают в жидкость резервуара 16, где и завершается формирование мелкодисперсного порошка и его накопление. Охлаждающая жидкость через каналы 19 омывает стенку камеры 17 по всему периметру, защищая ее от налипания частиц распыленного металла. Затем суспензия по трубопроводу 21 подается в гидроклассификатор 22, где происходит разделение порошка по фракциям. Порошок 26, отделенный от жидкости, по склизам 27 выгружается на поддоны 28, а жидкость и энергоноситель, пройдя очистку, возвращаются в работу.

Выполнение устройства в виде двух соосных форсунок с двумя каскадами распыления и общим газовым трактом позволяет более оптимально решить задачу распыления струи расплава потоком энергоносителя. Верхнее сопло первого каскада выполняет задачу разрушения струи расплава на первичные капли и разгона их до сверхзвуковых скоростей. Изменяя толщину регулировочной шайбы 6, добиваются такого кольцевого размера сопла 13, при котором его площадь сечения не превышала бы площадь каналов 25, т.е. расход энергоносителя через сопло 13 должен быть или равен, или быть несколько меньше расхода через подводящие каналы 25. Поток энергоносителя, пройдя камеру 11 и сопло 13, воздействуют на струю расплава в его зоне, причем имеет скорость, близкую к скорости звука. Далее поток энергоносителя, расширяясь в камере 12 и увлекая капли расплава, разгоняется с ними до скоростей, превышающих скорость звука. Задача нижнего сопла второго каскада - обеспечить дробление первичных капель до капель заданного минимального размера. С этой целью оно профилируется и настраивается для работы в расчетном режиме, причем скорость потока энергоносителя, сформированного этим соплом, определяется режимом разрушения первичных капель до капель заданного минимального размера. Настройку сопла 14 на расчетный режим работы производят гайкой 10, перемещая в осевом направлении дополнительную форсунку 7 и тем самым изменяют кольцевой зазор сопла 14, что в свою очередь изменяет скорость и плотность потока энергоносителя. Сверхзвуковой поток энергоносителя с каплями расплава, выйдя из камеры 12, попадают в зону действия сопла 14, где капли металла разбиваются о плотный и хорошо сформированный поток энергоносителя, вытекающий с большой скоростью из сопла 14, и распыляются до капель заданного минимального размера. Оптимальный угол истечения конического потока из сопла 14, т.е. угол между образующей конического сопла 14 и вертикальной осью устройства β = 25-27o, а расход энергоносителя через сопло 14 должен быть в 5-6 раз больше, чем через сопло 13.

Угол раскрытия α проточной конусной поверхности выбирается из условия минимума коагуляции частиц расплава, оптимального ввода первичных капель распыла для дальнейшего дробления в зону действия нижнего сопла и обеспечения необходимого эжекционного эффекта в зоне поступления расплава. При установившимся режиме распыления поступление расплава в зону распыления за счет эжекционных сил стабилизируется, т.е. масса поступающего по трубопроводу расплава постоянна, отсюда следует, что стабилизируются и параметры выходящего продукта - фракции порошка.

В качестве энергоносителя используется аргон, который подается в устройство под давлением 1,2 МПа, в качестве охлаждающей жидкости - вода.

В качестве исходного продукта используется алюминиевый лом утилизируемой авиационной техники.

Таким образом, при переработке авиационного алюминиевого лома предлагаемое устройство позволяет, используя в качестве энергоносителя аргон, а в качестве охлаждающей жидкости воду, при производительности 5 кг\мин получить порошок с содержанием фракции не более 40 мкм до 65%.

Источники информации
1. Установка для получения металлического порошка. Патент Японии 2-15601 // Изобретения стран мира, В 22 F, 1990, 3-391.

2. Устройство для получения металлического порошка. А.С. 1514461, В 22 F 9/06, 1989.

3. Устройство для получения металлических порошков. А.С. 1509184, В 22 F 9/06, 1989.

Похожие патенты RU2183534C2

название год авторы номер документа
Установка для получения металлических порошков из расплавов металлов и сплавов 2020
  • Лыков Павел Александрович
  • Байтимеров Рустам Миндиахметович
RU2730313C1
СПОСОБ ПОЛУЧЕНИЯ МЕЛКОДИСПЕРСНЫХ ПОРОШКОВ 2008
  • Лисенков Александр Аркадьевич
  • Барченко Владимир Тимофеевич
  • Гончаров Вадим Дмитриевич
  • Гончаров Сергей Вадимович
  • Скачек Ирина Геннадьевна
RU2395369C2
Устройство для получения металлического порошка 1985
  • Корницкий Леонид Иванович
  • Яковлев Александр Иванович
SU1291287A1
УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ МЕТАЛЛИЧЕСКИХ ПОРОШКОВ 1991
  • Муравьева Е.Л.
  • Орехов А.В.
RU2017588C1
Устройство для производства металлических порошков 1982
  • Мамедов Борис Шамшадович
  • Ничипоренко Олег Сергеевич
  • Ярусевич Леонид Иванович
  • Шульга Юрий Владиславович
SU1090501A1
Способ получения волокнистого материала и устройство для его осуществления 1986
  • Корницкий Леонид Иванович
  • Яковлев Александр Иванович
SU1335540A1
Способ получения композиционного металлического порошка и устройство для его осуществления 1983
  • Коротков Сергей Георгиевич
  • Фишман Борис Давидович
SU1073002A1
Устройство для получения металлического порошка распылением расплава 1980
  • Бабун Анатолий Викторович
  • Бобылев Георгий Георгиевич
  • Васильев Андрей Александрович
  • Папиров Игорь Исакович
  • Тихинский Геннадий Филиппович
SU933264A1
Устройство для получения металлических порошков распылением расплава 1983
  • Близно Александр Иванович
  • Корницкий Леонид Иванович
  • Карнаухов Виталий Григорьевич
  • Михайлова Ирина Павловна
  • Яковлев Александр Иванович
SU1204325A1
Установка для получения металлических порошков распылением расплава 1977
  • Вавилов Владимир Васильевич
  • Герливанов Вадим Григорьевич
  • Грачева Рита Андреевна
  • Парлашкевич Александр Николаевич
  • Питеряков Вячеслав Михайлович
  • Сахиев Александр Сергеевич
SU596368A1

Реферат патента 2002 года УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ МЕТАЛЛИЧЕСКИХ ПОРОШКОВ

Изобретение относится к порошковой металлургии, а именно к устройствам для получения металлических порошков путем распыления струи расплава потоком газа, и может быть использовано для производства порошков из алюминия, бронзы, цинка и т.д. Предложенное устройство содержит металлоприемник, рабочую форсунку с кольцевой полостью подвода энергоносителя и двумя рабочими соплами, камеру распыления, снабженную каналами охлаждения для охлаждающей жидкости, причем согласно изобретению оно снабжено дополнительной форсункой цилиндрической формы с резьбовым концом у одного основания и внешним конусом у другого, соосно размещенной в корпусе и диафрагме рабочей форсунки с возможностью осевого перемещения, причем дополнительная форсунка имеет камеру параболической формы с радиальными отверстиями ввода энергоносителя и сужающимся книзу критическим сечением и камеру распыления конической формы, металлоприемник выполнен в виде полого усеченного конуса и размещен в параболической камере с возможностью осевой регулировки и образует с критическим сечением кольцевое сопло, при этом дополнительная форсунка герметично соединена с металлоприемником трубопроводом подвода расплава и прикреплена к корпусу рабочей форсунки, дополнительно устройство снабжено классификатором. Обеспечивается стабилизация параметров и фракционного состава порошка. 1 з. п. ф-лы, 1 ил.

Формула изобретения RU 2 183 534 C2

1. Устройство для получения металлических порошков, содержащее металлоприемник, рабочую форсунку с кольцевой полостью подвода энергоносителя и двумя рабочими соплами, камеру распыления, снабженную каналами охлаждения для охлаждающей жидкости, отличающееся тем, что оно снабжено дополнительной форсункой цилиндрической формы с резьбовым концом у одного основания и внешним конусом у другого, соосно размещенной в корпусе и диафрагме рабочей форсунки с возможностью осевого перемещения, причем дополнительная форсунка имеет камеру параболической формы с радиальными отверстиями ввода энергоносителя и сужающимся книзу критическим сечением и камеру распыления конической формы, металлоприемник выполнен в виде полого усеченного конуса и размещен в параболической камере с возможностью осевой регулировки и образует с критическим сечением кольцевое сопло, при этом дополнительная форсунка герметично соединена с металлоприемником трубопроводом подвода расплава и прикреплена к корпусу рабочей форсунки. 2. Устройство по п. 1, отличающееся тем, что оно снабжено классификатором.

Документы, цитированные в отчете о поиске Патент 2002 года RU2183534C2

Устройство для получения металлических порошков 1987
  • Корницкий Леонид Иванович
  • Яковлев Александр Иванович
  • Долгин Михаил Александрович
  • Близно Александр Иванович
  • Смаль Виктор Григорьевич
SU1509184A1
Устройство для получения металлических порошков распылением расплавов 1978
  • Голубков Валерий Григорьевич
  • Блехеров Владимир Михайлович
  • Попов Андрей Константинович
  • Подгаецкий Александр Иванович
  • Вайнмахер Михаил Шевелевич
  • Остренский Игорь Семенович
  • Мухин Герасим Герасимович
  • Кауц Елена Викторовна
  • Козлов Виктор Алексеевич
SU662260A1
ФОРСУНКА ДЛЯ РАСПЫЛЕНИЯ МЕТАЛЛА 0
SU246301A1
DE 3533964 С1, 15.01.1987
US 4919854, 24.04.1990.

RU 2 183 534 C2

Авторы

Хайдин Ю.В.

Павлович Л.А.

Маеров Г.Р.

Кельменев Б.В.

Голев Э.С.

Липатов А.С.

Даты

2002-06-20Публикация

2000-09-07Подача