Изобретение относится к способам приготовления микросферических алюмооксидных носителей для катализаторов.
Целью изобретения является получение экономичным способом износоустойчивого микросферического алюмооксидного носителя с развитой удельной поверхностью и поровой структурой.
Известен способ [Кацобашвили Я. Р., Куркова Н.С. Формовка микросферических и шариковых адсорбентов и катализаторов на основе активной окиси алюминия. М.: ЦНИИТЭнефтехим, 1973. С. 77] приготовления микросферического алюмооксидного носителя распылительной сушкой суспензии гидроксида алюминия, осажденного из алюмината натрия. К недостаткам такой технологии относятся наличие вредных стоков, необходимость первоначального растворения технического тригидрата оксида алюминия (ТГА), повторного осаждения и отмывки осадка. Кроме того, значительны энергозатраты на испарение воды при распылительной сушке суспензии.
От ряда недостатков упомянутого выше способа можно избавиться, если использовать продукт быстрой дегидратации, так называемой термохимической активации (ТХА) технического тригидрата оксида алюминия. [Золотовский Б.П., Буянов Р.А. и др. Разработка технологии и создание производства сферических алюмооксидных носителей, адсорбентов и катализаторов // Журнал прикладной химии. 1997, т. 70, вып. 2, с. 299-305]. Термохимическую активацию проводят при температуре 400-800oС в течение нескольких секунд с последующим быстрым охлаждением материала. Продукт ТХА представляет собой оксидно-гидроксидное метастабильное состояние вещества с повышенной реакционной способностью. Перед распылительной сушкой проводят механохимическую активацию продукта ТХА и затем гидратацию в присутствии азотной кислоты в течение двух часов. Приготовленную суспензию подвергают обработке в распылительной сушилке, в результате чего образуется сухой порошок, который является товарным продуктом.
После прокаливания высушенного порошка получается микросферический алюмооксидный материал, который, к сожалению, не может быть использован в качестве носителя для катализаторов, т.к. имеет низкую износоустойчивость, малую насыпную плотность (0,6-0,7 г/см3), поэтому катализаторы на его основе легко истираются и выносятся газовым потоком из реактора.
Предлагаемое изобретение направлено на упрощение технологии и уменьшение энергоемкости процесса, на увеличение насыпной плотности носителя до 0,8-1,0 г/см3 и повышение его износоустойчивости.
Сущность изобретения заключается в смешивании продукта ТХА с достаточным для заполнения пор количеством воды, часть которой затем (при температуре 80-150oС) расходуется на неполную гидратацию продукта ТХА. Одновременно при сушке за счет испарения удаляется оставшаяся вода, поэтому не происходит полной гидратации продукта, которая привела бы к ослаблению и разрушению микросферических частиц продукта ТХА. Высушенный гидратированный продукт прокаливают при температуре 550-950oС.
Изобретение иллюстрируется следующими примерами (см.таблицу).
ПРИМЕР 1. 100 г продукта ТХА (насыпная плотность 1,3 г/см3, объем пор 0,05 см3/г, удельная поверхность 80 м2/г, потери при прокаливании 22 мас.%) при комнатной температуре смешивают с 25 см3 дистиллированной воды. Температура полученной смеси 23oС. Влажную смесь помещают в сушильный шкаф, нагретый до 150oС, выдерживают при этой температуре 2 часа и прокаливают при температуре 720oС. Согласно дериватографическому и рентгенофазовому анализам гидратированный и высушенный продукт ТХА представляет собой, в основном, псевдобемит, который при 550oС переходит в γ-Al2O3. Физические свойства полученного таким образом носителя приведены в таблице.
Износоустойчивость носителей оценивали с помощью стандартного устройства ППМ-1М для определения механической прочности катализаторов согласно техническому описанию АИФ 2.769.001 ТО и инструкции по его эксплуатации. Износоустойчивость рассчитывали как отношение, в процентах, содержания оставшихся после истирания фракций крупнее 63 микрон к содержанию фракций крупнее 63 микрон в исходном продукте до истирания. Если прокалить негидратированные тригидрат оксида алюминия (пример 2) или продукт ТХА (пример 3), то получаются носители с очень низкой механической прочностью.
В примерах 4-6 носители готовили аналогично примеру 1, но изменяли количество добавляемой воды, температуру влажной смеси, температуру сушки и прокаливания.
При недостаточном количестве добавленной воды (менее 18 мас.%, пример 4) гидратация и упрочнение микросферических частиц проходят незначительно и износоустойчивость носителей понижена. При избыточном количестве добавленной к продукту ТХА воды (более 35 мас.%, пример 5) износоустойчивость носителя также снижается из-за слишком глубокой гидратации продукта. Если сушку влажной массы проводить при температуре ниже 80oС, то вода испаряется относительно медленно, гидратация продукта успевает пройти глубже необходимого, и износоустойчивость носителя также снижается.
Носители, полученные согласно прототипу путем механохимической активации продукта ТХА, гидратации в присутствии азотной кислоты, распылительной сушки суспензии на опытно-промышленном оборудовании Ишимбайского специализированного химического завода катализаторов и прокаливания высушенной микросферы при 720oС в течение 6 часов, были легкими и непрочными (пример 7).
В примере 8 для сравнения приведены физические свойства и, в том числе, износоустойчивость импортного носителя для катализатора оксихлорирования, используемого в ЗАО "Каустик".
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПРИГОТОВЛЕНИЯ МИКРОСФЕРИЧЕСКОГО КАТАЛИЗАТОРА ОКСИХЛОРИРОВАНИЯ УГЛЕРОВОДОРОДОВ | 1996 |
|
RU2131298C1 |
СПОСОБ ПРИГОТОВЛЕНИЯ МИКРОСФЕРИЧЕСКОГО КАТАЛИЗАТОРА ОКСИХЛОРИРОВАНИЯ УГЛЕВОДОРОДОВ | 1997 |
|
RU2139761C1 |
МИКРОСФЕРИЧЕСКИЙ ОКСИД АЛЮМИНИЯ И СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ | 1999 |
|
RU2163886C2 |
МИКРОСФЕРИЧЕСКИЙ ОКСИД АЛЮМИНИЯ И СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ | 1997 |
|
RU2123974C1 |
КАТАЛИЗАТОР, СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ, ПРОЦЕСС ДЕГИДРИРОВАНИЯ УГЛЕВОДОРОДОВ С ИСПОЛЬЗОВАНИЕМ ЭТОГО КАТАЛИЗАТОРА | 2004 |
|
RU2256499C1 |
КАТАЛИЗАТОР ДЕГИДРИРОВАНИЯ ПАРАФИНОВЫХ УГЛЕВОДОРОДОВ C-C, СПОСОБ ЕГО ПОЛУЧЕНИЯ И СПОСОБ ДЕГИДРИРОВАНИЯ ПАРАФИНОВЫХ УГЛЕВОДОРОДОВ C-C | 2010 |
|
RU2448770C1 |
СПОСОБ ГИДРОФОБИЗАЦИИ ДРЕВЕСНЫХ ПОРОШКОВ | 1999 |
|
RU2158193C1 |
СПОСОБ ПОЛУЧЕНИЯ ЦЕОЛИТА ТИПА МОРДЕНИТ | 1999 |
|
RU2160228C1 |
КАТАЛИЗАТОР ДЛЯ ГИДРОХЛОРИРОВАНИЯ НЕНАСЫЩЕННЫХ СОЕДИНЕНИЙ | 1997 |
|
RU2151640C1 |
КАТАЛИЗАТОР ДЛЯ ГИДРОХЛОРИРОВАНИЯ НЕНАСЫЩЕННЫХ СОЕДИНЕНИЙ | 1997 |
|
RU2152254C1 |
Изобретение относится к области приготовления микросферических алюмооксидных носителей для катализаторов. Способ заключается в приготовлении носителя для катализаторов нефтехимических процессов путем гидратации, сушки и прокаливания продукта термохимической активации тригидрата оксида алюминия, причем к продукту термохимической активации прибавляют 18-35 мас.% воды с температурой 15-30oС, полученную смесь помещают в сушилку с температурой 80-150oС, а после высушивания прокаливают при 550-950oС. Технический результат: получают пористый износоустойчивый микросферический носитель с насыпной плотностью 0,8-1,0 г/см3. 1 табл.
Способ приготовления микросферического алюмооксидного носителя для катализаторов нефтехимических процессов путем гидратации, сушки и прокаливания продукта термохимической активации тригидрата оксида алюминия, отличающийся тем, что к продукту термохимической активации прибавляют 18-35 мас. % воды с температурой 15-30oС, полученную смесь помещают в сушилку с температурой 80-150oС и после высушивания прокаливают при 550-950oС.
ЗОЛОТОВСКИЙ Б.П., БУЯНОВ Р.А | |||
и др | |||
Разработка технологии и создание производства сферических алюмооксидных носителей, адсорбентов и катализаторов | |||
- Журнал прикладной химии, 1997, т | |||
Деревянный торцевой шкив | 1922 |
|
SU70A1 |
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
АВТОМАТ ДЛЯ ПУСКА В ХОД ПОРШНЕВОЙ МАШИНЫ | 1920 |
|
SU299A1 |
US 4704378 А1, 03.11.1987 | |||
US 4579839 А1, 01.04.1986. |
Авторы
Даты
2002-07-27—Публикация
2000-12-18—Подача