КАТАЛИЗАТОР И СПОСОБ ПОЛУЧЕНИЯ ЗАКИСИ АЗОТА Российский патент 2003 года по МПК B01J23/34 B01J23/18 B01J21/04 C01B21/22 C01B21/26 

Описание патента на изобретение RU2214863C1

Изобретение относится к катализаторам и способам получения закиси азота (N2O) путем окисления аммиака кислородом или кислородсодержащим газом. Закись азота находит широкое применение в различных областях: в полупроводниковой, парфюмерной, медицинской и пищевой промышленности. В последние годы появилась еще одна область применения - каталитическое окисление закисью азота бензола в фенол.

Потребности закиси азота в различных сферах обусловили повышенный интерес к разработке различных методов ее получения. Известно несколько способов получения закиси азота, среди которых можно выделить ряд каталитических методов:
1. Каталитическое восстановление монооксида азота (NO) либо оксидом углерода (СО), либо водородом, либо смесью монооксида углерода и водорода (синтез-газ) в присутствии гомогенных катализаторов [ЕР 054965, С 01 В 21/22, 1982].

2. Каталитическое восстановление монооксида азота либо монооксидом углерода, либо водородом, либо смесью оксида углерода и водорода (синтез-газ) в присутствии гетерогенных катализаторов, в качестве которых используют благородные металлы платиновой группы, нанесенные на носители, например, (1-5) мас.% Ru-Pt/Al2O3 (SiO2, ZrО2, TiO2) [ЕР 036761, С 01 В 21/22, 2000].

3. Каталитическое окисление аммиака кислородом в присутствии гетерогенных катализаторов на основе оксидов металлов.

Известен ряд оксидных катализаторов для получения закиси азота путем окисления аммиака, в частности, на основе диоксида марганца:
МnO2-Вi2O3 [Pat. DE, No 503200, 1930; Pat. CSR, No 158091, 1973];
MnO2-CuO [ЕР 799792, С 01 В 21/22, 1997];
МnO2-Вi2О3-Fе2O3 [Pat. DE, No. 503200, 1930; ЕР 799792, C 01 B 21/22, 1997];
MnO2-CoO-NiO [ЕР 799792, C 01 B 21/22, 1997].

Известен ряд катализаторов, не содержащих оксида марганца, а именно:
Со3O4-Аl2O3 [Справочник: Каталитические свойства веществ./Под ред. В.А. Ройтера, 1968]; Pr2O3-Nd2O3-CeO2 [ЕР 799792, C 01 B 21/22, 1997].

Наиболее близким к предлагаемому катализатору является катализатор для получения закиси азота, в состав которого входят оксиды марганца, висмута и алюминия, при содержании компонентов, мас.%: (5.0-5.0) MnO2 - (4.5-30.0) Bi2O3 - (90.5-35) Аl2O3 [пат. РФ 2102135, B 01 J 23/18, 1998; WO 9825698, B 01 J 23/18, 1998]. Катализатор применяют для получения закиси азота путем окисления аммиака кислородсодержащим газом. В частности, на катализаторе, содержащем, мас.%: 13МnО2-11Bi2O3-76 Аl2O3, при обработке реакционной смеси состава 9 об.% NН3 - 9 об.% O2 - 82 об.%. Не, при времени контакта 0.7 с и температуре реакции 350oС, получают следующие показатели процесса: степень превращения аммиака (ХNH3) 99.2%, селективность по N2O(SN2O) и по NO(SNO) - 87 и 2.8%, соответственно.

К недостаткам этого катализатора относится высокое содержание оксидов МnО2 и Вi2O3 в составе катализатора.

Изобретение решает задачу получения активного и селективного катализатора в отношении закиси азота путем окисления аммиака кислородом или кислородсодержащим газом, в том числе с пониженным содержанием активного компонента.

Задача решается катализатором, включающим марганецсодержащий активный компонент, нанесенный на алюмооксидный носитель. Катализатор содержит в качестве активного компонента композицию, представляющую собой смешанную аморфную оксидную фазу нестехиометрического состава MnBixOy (0.05≤х≤2.24; 2.08≤у≤5.36) или смесь аморфной фазы MnBixOy и кристаллической марганецсодержащей фазы.

Содержание компонентов в катализаторе, мас.%: MnBixOy или смесь MnBixOy и кристаллической марганецсодержащей фазы - 0.75-9.48, оксид алюминия - 90.52-99.25.

В качестве кристаллической марганецсодержащей фазы он содержит оксид марганца Мn2O3 и/или соединение состава Bi2Mn4O10. Содержание кристаллической марганецсодержащей фазы составляет, мас.%: 0,005-25,0.

Задача решается также способом получения закиси азота путем окисления аммиака кислородом или кислородсодержащим газом в присутствии марганецсодержащего катализатора вышеуказанного состава, процесс проводят при температуре 250-450oС.

Катализатор готовят пропиткой оксида алюминия азотнокислым раствором солей марганца и висмута с последующими стадиями сушки при 120-150oС и прокаливания при 400-750oС. Готовые катализаторы после прокалки по данным РФА не содержат в своей структуре фаз оксидов МnО3 и Вi2О3, наблюдается присутствие характерного "галло" смешанной аморфной фазы MnBixOy. В случае прокалки катализаторов при температурах выше 550-600oС в структуре катализатора может наблюдаться образование фазы оксида Мn2O3 и/или фазы смешанного соединения Bi2Mn4O10. Полученные катализаторы характеризуются достаточно высокой селективностью по N2O в реакции окисления аммиака кислородсодержащими смесями, несмотря на относительно низкое содержание активного компонента - смешанной аморфной Mn-Bi оксидной фазы. Так, при содержании активного компонента в катализаторе МnBiхОу/Аl2О3 существенно меньшем, чем в катализаторе прототипа МnO2-Вi2O3/Аl2O3, селективность в закись азота в реакции окисления аммиака на указанном выше катализаторе составила 87-88% при температуре реакции 350-360oС.

Существенными отличительными признаками предлагаемого катализатора являются: состав катализатора и структура активного компонента.

Каталитические свойства предлагаемых катализаторов в реакции окисления аммиака кислородсодержащими смесями исследуют в проточной установке и оценивают по селективности в целевой продукт N2O и на присутствие побочных примесей NO. Реакционную смесь состава: 8 об.% NН3, 9 об.% O2, Не - остальное, пропускают через слой катализатора фракционного состава 0.25-0.50 мм при объемной скорости 3600 ч-1. Температура реакции составляет 350oС. Состав исходной реакционной смеси и продуктов реакции анализируют хроматографически; концентрацию NO определяют с помощью анализатора ECOM-Omega (Австрия).

Сущность изобретения иллюстрируется следующими примерами.

Пример 1. 60 г гранул носителя Аl2О3 пропитывают азотнокислым раствором, полученным растворением 8.42 г соли Mn(NO3)2•6H2O и 2.66 г соли Bi(NO3)3•5H2O в 5% растворе НNО3. Влажные гранулы сушат под ИК сушилкой до сухого сыпучего состояния, затем сушат в сушильном шкафу при температуре 120oС в течение 4 ч. Затем образец прокаливают в печи при температуре 400-650oС в течение 6 ч. Полученный катализатор имеет состав, мас.%: 6 MnBi0.19O2.29 - 94 Al2О3. РФА образца катализатора показывает отсутствие в составе катализатора кристаллических фаз оксидов МnO2 и Вi2O3. Катализатор испытывают в реакции окисления аммиака кислородсодержащей смесью в тестовых условиях, описанных выше. Селективность по закиси азота (SN2O) и оксиду азота (SNO) составляет, соответственно, 87.4 и 2.0.

Пример 2. 60 г гранул носителя Аl2О3 пропитывают азотнокислым раствором, полученным растворением 6.25 г соли Mn(NO3)2•6H2O и 2.63 г соли Вi(NO3)3 •5H2O в 5% растворе HNO3. Влажные гранулы сушат под ИК сушилкой до сухого сыпучего состояния, затем сушат в сушильном шкафу при температуре 120oС в течение 4 ч. Затем образец прокаливают в печи при температуре 400-650oС в течение 6 ч. Полученный катализатор имеет состав, мас.%: 5 MnBi0.25O2.38 - 95 Аl2О3. РФА образца катализатора показывает отсутствие в составе катализатора кристаллических фаз оксидов МnO2 и Вi2O3. Катализатор испытывают в реакции окисления аммиака кислородсодержащей смесью в тестовых условиях, описанных выше. Селективность по закиси азота (SN2O) и оксиду азота (SNO) составляет, соответственно, 88.4 и 1.5.

Пример 3. 60 г гранул носителя Аl2О3 пропитывают азотнокислым раствором, полученным растворением 4.08 г соли Мn(NО3)2•6Н2O и 1.29 г соли Bi(NO3)3•5Н2O в 5% растворе HNO3. Влажные гранулы сушат под ИК сушилкой до сухого сыпучего состояния, затем сушат в сушильном шкафу при температуре 120oС в течение 4 ч. Затем образец прокаливают в печи при температуре 400-650oС в течение 6 ч. Полученный катализатор имеет состав, мас.%: 3 MnBi0.19O2.29 - 97 Аl2О3. РФА образца катализатора показывает отсутствие в составе катализатора кристаллических фаз оксидов МnO2 и Вi2O3. Катализатор испытывают в реакции окисления аммиака кислородсодержащей смесью в тестовых условиях, описанных выше. Селективность по закиси азота (SN2O) и оксиду азота (SNO) составляет, соответственно, 87.9 и 1.2.

Пример 4. 60 г гранул носителя Аl2О3 пропитывают азотнокислым раствором, полученным растворением 2.01 г соли Мn(NО3)2•6Н2O и 0.63 г соли Вi(NО3)3•5Н2O в 5% растворе HNO3. Влажные гранулы сушат под ИК сушилкой до сухого сыпучего состояния, затем сушат в сушильном шкафу при температуре 120oС в течение 4 ч. Затем образец прокаливают в печи при температуре 400-650oС в течение 6 ч. Полученный катализатор имеет состав, мас.%: 1.5 MnBi0.19O2.29 - 98.5 Аl2О3. РФА образца катализатора показывает отсутствие в составе катализатора кристаллических фаз оксидов МnO2 и Вi2O3. Катализатор испытывают в реакции окисления аммиака кислородсодержащей смесью в тестовых условиях, описанных выше. Селективность по закиси азота (SN2O) и оксиду азота (SNO) составляет, соответственно, 83.0 и 1.0.

Пример 5. 60 г гранул носителя Аl2О3 пропитывают азотнокислым раствором, полученным растворением 1.02 г соли Мn(NО3)2•6Н2O и 0.33 г соли Вi(NО3)3•5Н2O в 5% растворе HNO3. Влажные гранулы сушат под ИК сушилкой до сухого сыпучего состояния, затем сушат в сушильном шкафу при температуре 120oС в течение 4 ч. Затем образец прокаливают в печи при температуре 400-650oС в течение 6 ч. Полученный катализатор имеет состав, мас.%: 0.75 MnBi0.19O2.29 - 99.25 Аl2О3. РФА образца катализатора показывает отсутствие в составе катализатора кристаллических фаз оксидов МnO2 и Вi2O3. Катализатор испытывают в реакции окисления аммиака кислородсодержащей смесью в тестовых условиях, описанных выше. Селективность по закиси азота (SN2O) и оксиду азота (SNO) составляет, соответственно, 80.5 и 1.1.

Пример 6. 60 г гранул носителя Аl2О3 пропитывают азотнокислым раствором, полученным растворением 10.91 г соли Мn(NO3)2•6Н2O и 6.19 г соли Вi(NО3)3•5Н2O в 5% растворе НNО3. Влажные гранулы сушат под ИК сушилкой до сухого сыпучего состояния, затем сушат в сушильном шкафу при температуре 120oС в течение 4 ч. Затем образец прокаливают в печи при температуре 400-650oС в течение 6 ч. Полученный катализатор имеет состав, мас.%: 9.48 MnBi0.34O2.51 - 90.52 Аl2О3. РФА образца катализатора показывает отсутствие в составе катализатора кристаллических фаз оксидов МnO2 и Вi2O3. Катализатор испытывают в реакции окисления аммиака кислородсодержащей смесью в тестовых условиях, описанных выше. Селективность по закиси азота (SN2O) и оксиду азота (SNO) составляет, соответственно, 88.0 и 2.1.

Пример 7. 60 г гранул носителя Аl2О3 пропитывают азотнокислым раствором, полученным растворением 10.91 г соли Мn(NO3)2•6Н2O и 6.19 г соли Bi(NО3)3•5H2O в 5% растворе HNO3. Влажные гранулы сушат под ИК сушилкой до сухого сыпучего состояния, затем сушат в сушильном шкафу при температуре 120oС в течение 4 ч. Затем образец прокаливают в печи при температуре 400-650oС в течение 8 ч. Полученный катализатор имеет состав, мас.%: 8.48 MnBi0.42O2.63 - 0.91 Мn2O3 - 90.61 Аl2O3. РФА образца катализатора показывает отсутствие в составе катализатора кристаллических фаз оксидов MnO2 и Вi2O3. Катализатор испытывают в реакции окисления аммиака кислородсодержащей смесью в тестовых условиях, описанных выше. Селективность по закиси азота (SN2O) и оксиду азота (SNO) составляет, соответственно, 87.8 и 2.0.

Пример 8. 60 г гранул носителя Аl2О3 пропитывают азотнокислым раствором, полученным растворением 10.91 г соли Мn(NO3)2•6Н2O и 6.19 г соли Вi(NO3)3•5Н2O в 5% растворе НNО3. Влажные гранулы сушат под ИК сушилкой до сухого сыпучего состояния, затем сушат в сушильном шкафу при температуре 120oС в течение 4 ч. Затем образец прокаливают в печи при температуре 400-750oС в течение 8 ч. Полученный катализатор имеет состав, мас.%: 3.82 MnBi0.34O2.51 - 0.91 Мn2O3 - 4.58 Bi2Mn4O10 - 90.69 Аl2О3. РФА образца катализатора показывает отсутствие в составе катализатора кристаллических фаз оксидов МnO2 и Вi2O3. Катализатор испытывают в реакции окисления аммиака кислородсодержащей смесью в тестовых условиях, описанных выше. Селективность по закиси азота (SN2O) и оксиду азота (SNO) составляет, соответственно, 87.4 и 1.8.

Таким образом, предлагаемое изобретение позволяет снизить выход NO в процессе окисления аммиака, а также позволяет готовить катализаторы с пониженным содержанием активного компонента и с более низким насыпным весом на уровне 0.65-0.7 г/см3 (см. таблицу).

Похожие патенты RU2214863C1

название год авторы номер документа
КАТАЛИЗАТОР ПОЛУЧЕНИЯ ЗАКИСИ АЗОТА И СПОСОБ 2002
  • Носков А.С.
  • Мокринский В.В.
RU2214865C1
КАТАЛИЗАТОР И СПОСОБ ПОЛУЧЕНИЯ ЗАКИСИ АЗОТА 2002
  • Мокринский В.В.
  • Носков А.С.
RU2213615C1
КАТАЛИЗАТОР ПОЛУЧЕНИЯ ЗАКИСИ АЗОТА И СПОСОБ 2002
  • Носков А.С.
  • Мокринский В.В.
  • Иванова А.С.
RU2212934C1
КАТАЛИЗАТОР ПОЛУЧЕНИЯ ЗАКИСИ АЗОТА И СПОСОБ 2002
  • Мокринский В.В.
  • Иванова А.С.
  • Носков А.С.
RU2215577C1
КАТАЛИЗАТОР И СПОСОБ ПОЛУЧЕНИЯ ЗАКИСИ АЗОТА 2002
  • Носков А.С.
  • Мокринский В.В.
RU2214862C1
КАТАЛИЗАТОР ПОЛУЧЕНИЯ ЗАКИСИ АЗОТА И СПОСОБ ПОЛУЧЕНИЯ ЗАКИСИ АЗОТА 2002
  • Носков А.С.
  • Иванова А.С.
  • Мокринский В.В.
RU2216403C1
КАТАЛИЗАТОР ПОЛУЧЕНИЯ ЗАКИСИ АЗОТА И СПОСОБ 2002
  • Мокринский В.В.
  • Носков А.С.
  • Иванова А.С.
RU2211087C1
КАТАЛИЗАТОР И СПОСОБ ПОЛУЧЕНИЯ ЗАКИСИ АЗОТА 2002
  • Носков А.С.
  • Мокринский В.В.
  • Иванова А.С.
RU2219998C1
КАТАЛИЗАТОР И СПОСОБ ПОЛУЧЕНИЯ ЗАКИСИ АЗОТА 2002
  • Мокринский В.В.
  • Носков А.С.
  • Иванова А.С.
RU2212933C1
КАТАЛИЗАТОР И СПОСОБ ПОЛУЧЕНИЯ ЗАКИСИ АЗОТА 2002
  • Мокринский В.В.
  • Носков А.С.
  • Иванова А.С.
  • Славинская Е.М.
  • Золотарский И.А.
RU2214305C1

Иллюстрации к изобретению RU 2 214 863 C1

Реферат патента 2003 года КАТАЛИЗАТОР И СПОСОБ ПОЛУЧЕНИЯ ЗАКИСИ АЗОТА

Изобретение относится к катализаторам и способам получения закиси азота (N2O) путем окисления аммиака кислородом или кислородсодержащим газом. Закись азота находит широкое применение в различных областях народного хозяйства: в полупроводниковой, парфюмерной, медицинской и пищевой промышленности. Описаны катализатор и способ получения закиси азота, включающий марганецсодержащий активный компонент, нанесенный на алюмооксидный носитель. Катализатор содержит в качестве активного компонента композицию, представляющую собой смешанную аморфную оксидную фазу нестехиометрического состава MnBiхОу (0,05≤х≤2,24; 2,08≤у≤5,36) или смесь аморфной фазы MnBiхОу и кристаллической марганецсодержащей фазы. Процесс получения закиси азота путем окисления аммиака кислородом или кислородсодержащим газом в присутствии марганецсодержащего катализатора вышеуказанного состава проводят при температуре 250-450oС. Технический эффект - получение активного и селективного в отношении закиси азота катализатора с пониженным содержанием активного компонента. 2 с. и 2 з.п. ф-лы, 1 табл.

Формула изобретения RU 2 214 863 C1

1. Катализатор для получения закиси азота путем окисления аммиака кислородом или кислородсодержащим газом, включающий марганецсодержащий активный компонент, нанесенный на алюмооксидный носитель, отличающийся тем, что он содержит в качестве активного компонента композицию, представляющую собой смешанную аморфную оксидную фазу нестехиометрического состава MnBiхОу (0,05≤х≤2,24; 2,08≤у≤5,36) или смесь аморфной оксидной фазы MnBiхОу и кристаллической марганецсодержащей фазы при содержании компонентов, мас. %: MnBiхОу или смесь MnBiхОу и кристаллической марганецсодержащей фазы 0,75÷9,48, оксид алюминия 90,52÷99,25. 2. Катализатор по п. 1, отличающийся тем, что в качестве кристаллической марганецсодержащей фазы он содержит оксид марганца Mn2О3 и/или соединение состава Bi2Mn4О10. 3. Катализатор по п. 1 или 2, отличающийся тем, что содержание кристаллической марганецсодержащей фазы составляет 0,005-25,0 мас. %. 4. Способ получения закиси азота путем окисления аммиака кислородом или кислородсодержащим газом в присутствии марганецсодержащего катализатора, отличающийся тем, что процесс проводят при температуре 250-450oС, а в качестве катализатора используют катализатор по любому из пп. 1-3.

Документы, цитированные в отчете о поиске Патент 2003 года RU2214863C1

КАТАЛИЗАТОР ДЛЯ ПОЛУЧЕНИЯ ЗАКИСИ АЗОТА 1996
  • Мокринский В.В.
  • Славинская Е.М.
  • Носков А.С.
  • Золотарский И.А.
RU2102135C1
DE 3126675 А1, 05.08.1982
Устройство для управления процессом термообезмасливания парафина 1972
  • Шевцов Владимир Порфирьевич
  • Эмануилов Глеб Михайлович
  • Калинов Борис Петрович
  • Званский Самуил Яковлевич
  • Игнатенко Вячеслав Владимирович
  • Мингалиев Назип Ахматович
  • Мануилов Виктор Иванович
SU562567A1
US 4812300 А, 14.03.1989.

RU 2 214 863 C1

Авторы

Мокринский В.В.

Носков А.С.

Славинская Е.М.

Золотарский И.А.

Даты

2003-10-27Публикация

2002-06-27Подача