СПОСОБ ОБНАРУЖЕНИЯ ТРЕЩИН В ТВЕРДОМ ТЕЛЕ Российский патент 2003 года по МПК G01N29/04 

Описание патента на изобретение RU2219538C2

Изобретение относится к неразрушающему контролю твердых тел с помощью акустических волн, а именно к способам обнаружения трещин в твердом теле, и может быть использовано для контроля металлических изделий, в частности, колес и осей колесных пар железнодорожных вагонов.

Наиболее близким по технической сущности и достигаемому эффекту является способ обнаружения трещин в твердом теле (см. патент США 5736642, кл. G 01 N 29/06 выдан 7 апреля 1998 г.), который заключается в том, что в твердом теле возбуждают первичные акустические волны различных частот, которые взаимодействуя на трещине, генерируют вторичные акустические волны на комбинационных частотах, измеряют амплитуды первичных и вторичных волн, на основании которых определяют коэффициент наличия трещины, по превышению которым порогового значения, определяемого на основе измерений бездефектного твердого тела, судят о наличии трещин.

Недостаток известного способа заключается в том, что ограниченные размеры исследуемого образца (или конструкции) приводят к появлению в нем нулевых зон, в которых (из-за отражений первичных и вторичных волн от границ и их интерференции) амплитуда по крайней мере одной из первичных волн близка к нулю, в результате чего, при наличии трещин в этих зонах, первичные акустические волны не взаимодействуют и не генерируют вторичные волны на комбинационных частотах; это приводит к пропуску (т.е. не обнаружению) трещин и соответственно к снижению на дежности.

Целью настоящего изобретения является повышение надежности.

Поставленная цель достигается тем, что в способе обнаружения трещин в твердом теле, заключающемся в том, что в твердом теле возбуждают первичные акустические волны различных частот, которые взаимодействуя на трещине, генерируют вторичные акустические волны на комбинационных частотах, измеряют амплитуды первичных и вторичных волн, на основании которых определяют коэффициент наличия трещины, по превышению которым порогового значения, определяемого на основе измерений бездефектного твердого тела, судят о наличии трещин, первичные акустические волны производят путем последовательного возбуждения ультразвуковых волн на ряде частот с одновременным с каждой из частот ультразвуковых волн возбуждением упругих колебаний на собственных частотах посредством ударного воздействия на твердое тело, при этом измеряют собственные частоты, а комбинационные частоты определяют как сумму и разность каждой частоты ультразвуковых волн с каждой из собственных частот упругих колебаний, причем коэффициент наличия трещины рассчитывают по формуле:

где Кн.т - коэффициент наличия трещины;
i = 1...N - номера собственных частот упругих колебаний;
j = 1...М - номера частот ультразвуковых волн;
N - количество используемых собственных частот упругих колебаний, N≥2;
М - количество частот ультразвуковых волн, М≥2;
Аij - амплитуда упругого колебания на собственной частоте с номером i при возбуждении ультразвуковой волны на частоте с номером j;
Aj - амплитуда ультразвуковой волны на частоте с номером j;
Аij(-) - амплитуда волны на комбинационной частоте, образованной как разность частоты ультразвуковой волны с номером j и собственной частоты упругих колебаний с номером i;
Аij(+) - амплитуда волны на комбинационной частоте, образованной как сумма частоты ультразвуковой волны с номером j и собственной частоты упругих колебаний с номером i.

Такое выполнение способа, при котором первичные акустические волны производят путем последовательного возбуждения ультразвуковых волн на ряде частот с одновременным с каждой из частот ультразвуковых волн возбуждением упругих колебаний на собственных частотах посредством ударного воздействия на твердое тело, при этом измеряют собственные частоты, а комбинационные частоты определяют как сумму и разность каждой частоты ультразвуковых волн с каждой из собственных частот упругих колебаний, причем коэффициент наличия трещины рассчитывают по формуле:

где Кн.т - коэффициент наличия трещины;
i = 1...N - номера собственных частот упругих колебаний;
j = 1...М - номера частот ультразвуковых волн;
N - количество используемых собственных частот упругих колебаний, N≥2;
М - количество частот ультразвуковых волн, М≥2;
Аij - амплитуда упругого колебания на собственной частоте с номером i при возбуждении ультразвуковой волны на частоте с номером j;
Aj - амплитуда ультразвуковой волны на частоте с номером j;
Aij(-) - амплитуда волны на комбинационной частоте, образованной как разность частоты ультразвуковой волны с номером j и собственной частоты упругих колебаний с номером i;
Аij(+) - амплитуда волны на комбинационной частоте, образованной как сумма частоты ультразвуковой волны с номером j и собственной частоты упругих колебаний с номером i;
позволяет, используя собственные низкочастотные колебания на нескольких различных частотах, воздействовать на любую трещину, в том числе и на трещину, находящуюся в нулевой зоне для одного из этих собственных колебаний, тем самым повысить надежность обнаружения трещин в любом месте их расположения.

На чертеже изображено устройство для определения трещин в твердом теле.

Устройство для осуществления способа обнаружения трещин в твердом теле содержит подключенные к контролируемой детали (твердому телу) 1 блок 2 генерации упругих колебаний, состоящий из последовательно соединенных генератора 3 синусоидального сигнала ультразвуковой частоты, усилителя 4 мощности сигнала и акустического излучающего преобразователя 5, и блок 6 настройки приемных преобразователей, состоящий из акустических приемников 7, установленных на образце 1 и соединенных с предварительным усилителем 8. Выходной блок 9 обработки принятых сигналов последовательно подключен к блоку 6 приемных преобразователей и состоит из аналого-цифрового преобразователя 10 и персонального компьютера 11. К контролируемой детали 1 подключен блок 12 ударного возбуждения собственных упругих колебаний.

Устройство работает следующим образом. Контролируемую деталь 1 устанавливают на специальную соответствующую данной детали подставку. Для каждого типа детали заранее определяют точки закрепления акустического излучающего преобразователя 5 и акустического приемника 7. В детали возбуждают первичные акустические волны. Синусоидальные ультразвуковые колебания на ряде частот поступают от генератора 3 синусоидального сигнала ультразвуковой частоты на усилитель 4 мощности и затем на акустический излучающий преобразователь 5, установленный на контролируемой детали 1. Одновременно с каждой из ряда частот по контролируемой детали 1 производят ударное воздействие с помощью блока 12 ударного возбуждения собственных упругих колебаний, возбуждающее в детали упругие колебания на ее собственных частотах. При наличии в контролируемой детали 1 трещины, параметры трещины изменяются под действием упругих колебаний на собственных частотах детали, при этом распространяющаяся в детали ультразвуковая волна модулируется на трещине низкочастотными колебаниями. В результате в детали 1 возбуждаются вторичные акустические волны на комбинационных частотах; в первом приближении амплитуды генерируемых на трещине акустических волн на комбинационных частотах пропорциональны геометрическим размерам трещины. В случае отсутствия трещины акустические волны практически не взаимодействуют, и модуляции ультразвуковой волны не происходит. Создаваемые в детали 1 акустические волны принимаются акустическим приемником 7, установленным на детали 1. Принятый акустическим приемником 7 сигнал после усиления предварительным усилителем 8 поступает на аналого-цифровой преобразователь 10 и далее на персональный компьютер 11 для обработки данных. В компьютере 11 обрабатывают поступающие сигналы. Определяют собственные частоты упругих колебаний, возбуждаемых в контролируемой детали 1 при ударном воздействии, и вычисляют комбинационные частоты как сумму и разность каждой частоты из ряда частот ультразвуковых волн с каждой из собственных частот упругих колебаний. Определяют амплитуды первичных и вторичных акустических волн.

Коэффициент наличия трещины рассчитывают по формуле:

где Кн.т - коэффициент наличия трещины;
i = 1...N - номера собственных частот упругих колебаний;
j = 1...М - номера частот ультразвуковых волн;
N - количество используемых собственных частот упругих колебаний, N≥2;
М - количество частот ультразвуковых волн, М≥2;
Аij - амплитуда упругого колебания на собственной частоте с номером i при возбуждении ультразвуковой волны на частоте с номером j;
Aj - амплитуда ультразвуковой волны на частоте с номером j;
Аij(-) - амплитуда волны на комбинационной частоте, образованной как разность частоты ультразвуковой волны с номером j и собственной частоты упругих колебаний с номером i;
Аij(+) - амплитуда волны на комбинационной частоте, образованной как сумма частоты ультразвуковой волны с номером j и собственной частоты упругих колебаний с номером i.

Превышение коэффициентом наличия трещины порогового значения, определяемого на основе измерений бездефектной (без трещины) детали, свидетельствует о наличии трещины в контролируемой детали.

Похожие патенты RU2219538C2

название год авторы номер документа
СПОСОБ КОНТРОЛЯ ДЕФЕКТНОСТИ ИЗДЕЛИЙ 2015
  • Сазонов Сергей Николаевич
RU2616758C1
НЕЛИНЕЙНЫЙ УЛЬТРАЗВУКОВОЙ СПОСОБ ОБНАРУЖЕНИЯ ТРЕЩИН И ИХ МЕСТОПОЛОЖЕНИЙ В ТВЕРДОМ ТЕЛЕ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ 2005
  • Казаков Вячеслав Вячеславович
RU2280863C1
СПОСОБ ОБНАРУЖЕНИЯ ТРЕЩИН В ТВЕРДОМ ТЕЛЕ 2004
  • Беагон Владимир Самуилович
  • Ерилин Евгений Сергеевич
  • Сорокин Сергей Вениаминович
  • Фогель Александр Львович
RU2274857C1
Способ обнаружения трещины лопатки газотурбинного двигателя 2017
  • Толстихин Юрий Юрьевич
  • Блинов Федор Владимирович
  • Зорин Дмитрий Владимирович
  • Бойко Олег Владимирович
RU2732469C1
УСТРОЙСТВО ДЛЯ ИСПЫТАНИЯ ЭЛЕКТРОТЕХНИЧЕСКОГО ОБОРУДОВАНИЯ 2004
  • Емельянов В.И.
  • Петров О.Е.
  • Тукачев И.Г.
  • Пыхов В.С.
  • Батуев В.В.
  • Карамышев Р.А.
RU2262696C1
НЕЛИНЕЙНЫЙ АКУСТИЧЕСКИЙ СПОСОБ ОБНАРУЖЕНИЯ ТРЕЩИН И ИХ МЕСТОПОЛОЖЕНИЙ В КОНСТРУКЦИИ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ 2004
  • Казаков Вячеслав Вячеславович
RU2274859C1
СПОСОБ ОБНАРУЖЕНИЯ ДЕФЕКТОВ В МАТЕРИАЛЕ УПРУГОЙ КОНСТРУКЦИИ 1999
  • Михайлов А.Л.
  • Вернигор В.Н.
RU2190207C2
НЕЛИНЕЙНЫЙ МОДУЛЯЦИОННЫЙ СПОСОБ МОНИТОРИНГА СОСТОЯНИЯ ПРОТЯЖЕННЫХ КОНСТРУКЦИЙ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ 2022
  • Рыбин Игорь Александрович
RU2799241C1
СПОСОБ ОПРЕДЕЛЕНИЯ ЭНЕРГИИ СИГНАЛА АКУСТИЧЕСКОЙ ЭМИССИИ В ТВЕРДОМ ТЕЛЕ 1992
  • Петров Валентин Алексеевич
  • Пикулин Виктор Александрович
  • Розанов Александр Олегович
  • Савельев Владимир Николаевич
  • Станчиц Сергей Алексеевич
RU2037821C1
УЛЬТРАЗВУКОВОЙ СПОСОБ ИЗМЕРЕНИЯ МЕХАНИЧЕСКИХ НАПРЯЖЕНИЙ ПРИ ЗАТЯЖКЕ БОЛТОВЫХ СОЕДИНЕНИЙ 1997
  • Власов Валерий Тимофеевич[Ru]
  • Марин Борис Никитич[Ru]
RU2107907C1

Реферат патента 2003 года СПОСОБ ОБНАРУЖЕНИЯ ТРЕЩИН В ТВЕРДОМ ТЕЛЕ

Изобретение относится к неразрушающему контролю твердых тел акустическими методами. Способ обнаружения трещин в твердом теле заключается в том, что в твердом теле возбуждают первичные акустические волны различных частот, которые взаимодействуя на трещине, генерируют вторичные акустические волны на комбинационных частотах, измеряют амплитуды первичных и вторичных волн, на основании которых определяют коэффициент наличия трещины, по превышению которым порогового значения, определяемого на основе измерений бездефектного твердого тела, судят о наличии трещин. При этом первичные акустические волны производят путем последовательного возбуждения ультразвуковых волн на ряде частот с одновременным с каждой из частот ультразвуковых волн возбуждением упругих колебаний на собственных частотах посредством ударного воздействия на твердое тело, при этом измеряют собственные частоты, а комбинационные частоты определяют как сумму и разность каждой частоты ультразвуковых волн с каждой из собственных частот упругих колебаний, причем коэффициент наличия трещины определяют расчетным путем. Данное изобретение направлено на повышение надежности контроля испытываемых изделий. 1 ил.

Формула изобретения RU 2 219 538 C2

Способ обнаружения трещин в твердом теле, заключающийся в том, что в твердом теле возбуждают первичные акустические волны различных частот, которые, взаимодействуя на трещине, генерируют вторичные акустические волны на комбинационных частотах, измеряют амплитуды первичных и вторичных волн, на основании которых определяют коэффициент наличия трещины, по превышению которым порогового значения, определяемого на основе измерений бездефектного твердого тела, судят о наличии трещин, отличающийся тем, что первичные акустические волны производят путем последовательного возбуждения ультразвуковых волн на ряде частот с одновременным с каждой из частот ультразвуковых волн возбуждением упругих колебаний на собственных частотах посредством ударного воздействия на твердое тело, при этом измеряют собственные частоты, а комбинационные частоты определяют как сумму и разность каждой частоты ультразвуковых волн с каждой из собственных частот упругих колебаний, причем коэффициент наличия трещины рассчитывают по формуле

где Кн.т. - коэффициент наличия трещины;

i = 1... N - номера собственных частот упругих колебаний;

j = 1... М - номера частот ультразвуковых волн;

N - количество используемых собственных частот упругих колебаний, N≥2;

М - количество частот ультразвуковых волн, М≥2;

Aij - амплитуда упругого колебания на собственной частоте с номером i при возбуждении ультразвуковой волны на частоте с номером j;

Aj - амплитуда ультразвуковой волны на частоте с номером j;

А(-)ij

- амплитуда волны на комбинационной частоте, образованной как разность частоты ультразвуковой волны с номером j и собственной частоты упругих колебаний с номером i;

А(+)ij

- амплитуда волны на комбинационной частоте, образованной как сумма частоты ультразвуковой волны с номером j и собственной частоты упругих колебаний с номером i.

Документы, цитированные в отчете о поиске Патент 2003 года RU2219538C2

US 5736642 А, 07.04.1998
US 4817431 А, 04.04.1989
СПОСОБ ОПРЕДЕЛЕНИЯ ХАРАКТЕРИСТИК НАПРЯЖЕННО-ДЕФОРМИРОВАННОГО СОСТОЯНИЯ КОНСТРУКЦИОННЫХ МАТЕРИАЛОВ 1999
  • Власов В.Т.
  • Марин Б.Н.
RU2146818C1
RU 94015760 A1, 10.05.1996
RU 94004588 A1, 27.09.1995
Способ контроля дефектности изделия 1987
  • Беспрозванных Евгений Викторович
  • Салита Евгений Юрьевич
  • Лапенко Николай Михайлович
SU1446552A1
СПОСОБ ИЗМЕРЕНИЯ ПАРАМЕТРОВ ЗАТУХАНИЯ УПРУГИХ ВОЛН 1996
  • Теодорович С.Б.
  • Нефедов В.М.
RU2112235C1
Устройство для контроля качества изделий 1988
  • Кочетов Михаил Александрович
  • Молодцов Константин Ильич
  • Мороз Олег Александрович
  • Сучков Геннадий Алексеевич
SU1606925A1
Способ ультразвукового контроля изделий 1980
  • Медведев Александр Васильевич
  • Городков Владимир Евгеньевич
SU911317A1
Способ виброакустического контроля изделий 1982
  • Цыфанский Семен Львович
  • Милов Александр Борисович
  • Невский Юрий Николаевич
  • Ожиганов Владимир Михайлович
SU1045118A1

RU 2 219 538 C2

Авторы

Ерилин Е.С.

Матвеев А.Л.

Назаров В.Е.

Потапов А.И.

Сутин А.М.

Фогель А.Л.

Чижов В.А.

Даты

2003-12-20Публикация

2002-01-03Подача