СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ ДЕТАЛЕЙ ИЗ ЖАРОПРОЧНЫХ СПЛАВОВ НА ОСНОВЕ НИКЕЛЯ Российский патент 2004 года по МПК C22F1/10 

Описание патента на изобретение RU2232204C2

Изобретение относится к области термической обработки металлов и сплавов и может найти применение при термической обработке изделий из жаропрочных никелевых сплавов с равноосной, ориентированной и монокристаллической структурой.

Известен способ термической обработки литейных жаропрочных никелевых сплавов с равноосной структурой, включающий нагрев деталей до 1200-1220°С, выдержку в течение 4-х часов и охлаждение на воздухе [1].

Недостатком известного способа термической обработки является случайное распределение частиц выделяющейся γ ’-фазы, при этом сами частицы имеют существенно разные размеры в осях дендритов и в межосных пространствах. Все это неблагоприятно отражается на эксплуатационных свойствах сплавов.

Другой известный способ термической обработки, применяющийся и для монокристаллических отливок, включает три этапа - на первом этапе детали нагревают до температуры в интервале (tп.p-tэвт), где tп.p и tэвт - температуры полного растворения γ ’-фазы и плавления эвтектики соответственно, выдерживают от нескольких минут до нескольких часов и охлаждают со скоростью более 100 град/мин; на втором - производят нагрев деталей до температуры вблизи рабочей температуры 1000-1050°С, лежащей в интервале между температурой начала растворения γ ’-фазы tн.р и tп.p, выдерживают в пределах от 10 до 24 часов и охлаждают со скоростью более 100 град/мин; на третьем этапе детали нагревают до температуры tн.p 870-900°С, выдерживают в течение от 30 до 48 часов, после чего охлаждают [1].

Недостатками этого способа термической обработки являются случайное распределение частиц γ ’-фазы, увеличение размера и объемной доли микропор, длительный технологический процесс термической обработки до 70-75 часов высокотемпературных выдержек без учета времени нагревов и охлаждений.

Технической задачей изобретения является формирование в результате термической обработки размеров, формы, распределения частиц γ ’-фазы и структуры γ - и γ ’-твердых растворов, обеспечивающих высокий уровень эксплуатационных свойств сплавов на никелевой основе с равноосной, ориентированной или монокристаллической структурой при существенном сокращении длительности процесса термической обработки. Дополнительной задачей изобретения является повышение упругих и прочностных свойств сплава за счет упорядоченного расположения атомов легирующих элементов в кристаллической решетке никеля.

Поставленная задача решается тем, что способ термической обработки деталей из жаропрочных сплавов на основе никеля включает три этапа. Первый этап - нагрев до температуры в интервале (tп.p-tэвт), выдержка и охлаждение со скоростью выше 100 град/мин. Второй этап - нагрев до температуры в интервале (tн.p-tп.p), где tп.p - температура полного растворения γ ’-фазы, tэвт - температура плавления эвтектики (γ +γ ’), tн.р - температура растворения γ ’-фазы, выдержка и охлаждение со скоростью выше 100 град/мин. Третий этап - нагрев до температуры вблизи tн.p, выдержка и охлаждение.

Новым в изобретении является то, что скорость нагрева на всех этапах выше 100 град/мин, длительность выдержек составляет до 300 с, а охлаждение на третьем этапе ведут со скоростью выше 100 град/мин, при этом каждый этап повторяют несколько раз.

Кроме того, после выполнения третьего этапа проводят дополнительный отжиг при температуре ниже ty, где ty - температура упорядочения γ -твердого раствора.

Быстрые нагревы и охлаждения способствуют ускорению диффузионных процессов, в результате чего в детали формируется структура с мелкодисперсными частицами γ ’-фазы, закономерным образом распределенными по объему сплава, что в сочетании с отсутствием микропористости обеспечивает более высокий уровень эксплуатационных свойств.

Во время дополнительного отжига при температуре ниже температуры упорядочения γ - твердого раствора (ty) продолжительностью более 50 часов протекают процессы атомного упорядочения, что обуславливает рост упругих и прочностных свойств сплава.

На прилагаемых рисунках показаны микроструктуры сплава ЖС6У после термической обработки по режимам (увеличение 10000 раз):

фиг.1 - серийная термическая обработка 1210°С, 4 ч, охлаждение на воздухе;

фиг.2 - нагрев в соляной ванне 1225-1235°С, выдержка 60 с, охлаждение в воде, 5 раз + нагрев в соляной ванне 1035-1045°С, выдержка 180 с, охлаждение в воде, 7 раз + нагрев в соляной ванне 870-890°С, выдержка 30 с, охлаждение в воде, 20 раз;

фиг.3 - предыдущая термическая обработка + 500°С, 100 ч.

Пример. Проводят термическую обработку образцов из литейного жаропрочного никелевого сплава ЖС6У с равноосной структурой. Микроструктура сплава после серийной термической обработки (нагрев в вакууме до 1200-1220°C, выдержка 4 часа, охлаждение на воздухе) представлена на фиг.1. Образцы с такой структурой нагревали в соляной ванне с температурой 1225-1235°С, лежащей в интервале между tп.p1225°С и tэвт1250°С, выдерживали 60 с и охлаждали в воде. Этот первый этап повторили 5 раз.

На втором этапе образцы нагревали в соляной ванне с температурой 1035-1045°С, лежащей в интервале между tн.р880°С и tп.p1225°С, выдерживали 180 с и охлаждали в воде, повторяя этап 7 раз.

На третьем этапе образцы нагревали в соляной ванне с температурой 870-890°С, т.е. вблизи tн.р, выдерживали 300 с и охлаждали в воде. Этот этап повторили 20 раз. Микроструктура, сформировавшаяся после третьего этапа, показана на фиг.2. Как видно из фиг.2, частицы γ ’- фазы, во-первых, имеют размер в поперечнике от 0,02 до 0,04 мкм, т.е. на порядок меньше, чем после серийной термической обработки (0,3-0,5 мкм на фиг.1). Во-вторых, размер частиц, расположенных в осях дендритов и в межосных пространствах, одинаков. И, в-третьих, частицы γ ’-фазы образуют структуру из однонаправленных “плотно нанизанных бус”, похожую на микроструктуру, получающуюся после испытания на ползучесть и приведенную в [1, рис.2.17 б, с.114], но отличающуюся тем, что вытянутые включения γ ’-фазы являются не сплошными, а “бусовидными”.

Испытания образцов, обработанных по предлагаемому режиму, показали, что пределы их кратковременной и длительной прочности превышают таковые для образцов, обработанных по серийной технологии, на 35... 50% в зависимости от температурно-временных условий испытаний. Весь технологический процесс термической обработки по предлагаемому способу длится около 2,5 часов, т.е. примерно в 30 раз быстрее серийного.

Дополнительный упорядочивающий отжиг в течение 100 ч при 500°С приводит к формированию совершенной, взаимно перпендикулярной ориентировке коротких “бус-цепочек”, состоящих из нескольких мелких, хорошо ограненных кубических частиц γ ’-фазы, образующих общую структуру, похожую на тканое полотно (фиг.3). Совершенная кубическая морфология частиц γ ’-фазы свидетельствует об их упорядоченном состоянии [1, с.113, 3-й абзац снизу].

В результате дополнительного отжига модуль нормальной упругости и предел прочности на растяжение возрастают на 5-7% и 8-12% соответственно.

Литература

1. Каблов Е.Н. Литые лопатки газотурбинных двигателей (сплавы, технология, покрытия). - М.: МИСИС, 2001, стр.110-115.

Похожие патенты RU2232204C2

название год авторы номер документа
СПОСОБ ВОССТАНОВИТЕЛЬНОЙ ТЕРМИЧЕСКОЙ ОБРАБОТКИ ИЗДЕЛИЙ ИЗ ЖАРОПРОЧНЫХ НИКЕЛЕВЫХ СПЛАВОВ 2011
  • Новиков Антон Владимирович
  • Быбин Андрей Александрович
  • Середенок Виктор Аркадьевич
  • Смыслова Марина Константиновна
  • Дементьев Алексей Владимирович
  • Иванова Ольга Ильинична
RU2459885C1
СПОСОБ ОБРАБОТКИ ОТЛИВОК ИЗ ЖАРОПРОЧНЫХ НИКЕЛЕВЫХ СПЛАВОВ ДЛЯ МОНОКРИСТАЛЬНОГО ЛИТЬЯ 2007
  • Елисеев Юрий Сергеевич
  • Поклад Валерий Александрович
  • Оспенникова Ольга Геннадиевна
  • Ларионов Валентин Николаевич
  • Логунов Александр Вячеславович
  • Разумовский Игорь Михайлович
  • Разумовский Всеволод Игоревич
RU2361012C1
СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ ОТЛИВОК ИЗ БЕЗУГЛЕРОДИСТЫХ ЖАРОПРОЧНЫХ НИКЕЛЕВЫХ СПЛАВОВ ДЛЯ МОНОКРИСТАЛЛИЧЕСКОГО ЛИТЬЯ 2012
  • Кузнецов Валерий Павлович
  • Лесников Владимир Петрович
  • Попов Николай Артемьевич
  • Конакова Ирина Павловна
RU2485204C1
СПОСОБ ПОЛУЧЕНИЯ ОТЛИВКИ ИЗ ЛИТЕЙНОГО НИКЕЛЕВОГО СПЛАВА 2004
  • Каблов Е.Н.
  • Бунтушкин В.П.
  • Герасимов В.В.
  • Висик Е.М.
RU2254962C1
СПОСОБ ОБРАБОТКИ ОТЛИВОК ИЗ ЖАРОПРОЧНОГО НИКЕЛЕВОГО СПЛАВА ДЛЯ МОНОКРИСТАЛЬНОГО ЛИТЬЯ 2007
  • Елисеев Юрий Сергеевич
  • Поклад Валерий Александрович
  • Оспенникова Ольга Геннадиевна
  • Ларионов Валентин Николаевич
  • Логунов Александр Вячеславович
  • Разумовский Игорь Михайлович
  • Разумовский Всеволод Игоревич
RU2361011C1
СПОСОБ ИЗГОТОВЛЕНИЯ РОТОРА ГАЗОТУРБИННОГО ДВИГАТЕЛЯ 2001
  • Каблов Е.Н.
  • Ломберг Б.С.
  • Чударева Л.П.
  • Рыльников В.С.
  • Овсепян С.В.
  • Орехов Н.Г.
  • Толорайя В.Н.
  • Григорьева Т.И.
  • Лукин В.И.
  • Маркина Л.С.
RU2196672C1
СПОСОБ ОБРАБОТКИ ОТЛИВОК С МОНОКРИСТАЛЛИЧЕСКОЙ СТРУКТУРОЙ ИЗ ЖАРОПРОЧНЫХ НИКЕЛЕВЫХ СПЛАВОВ ГОРЯЧИМ ИЗОСТАТИЧЕСКИМ ПРЕССОВАНИЕМ 2008
  • Тихонов Альберт Андреевич
  • Маринин Святослав Федорович
  • Разумовский Игорь Михайлович
  • Логунов Александр Вячеславович
  • Крылов Владимир Николаевич
  • Виноградов Александр Иванович
  • Кочетков Владимир Андреевич
  • Новиков Александр Сергеевич
  • Вертий Константин Борисович
RU2380454C1
Способ аддитивного формирования изделия с комбинированной структурой из жаропрочного никелевого сплава с высокотемпературным подогревом 2023
  • Попович Анатолий Анатольевич
  • Борисов Евгений Владиславович
  • Полозов Игорь Анатольевич
  • Стариков Кирилл Андреевич
  • Соколова Виктория Владиславовна
  • Новиков Павел Александрович
RU2821638C1
СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ ИЗДЕЛИЙ ИЗ ЖАРОПРОЧНЫХ, ДЕФОРМИРУЕМЫХ, ДИСПЕРСИОННО-ТВЕРДЕЮЩИХ СПЛАВОВ НА НИКЕЛЕВОЙ ОСНОВЕ 2004
  • Латышев В.Б.
  • Каблов Е.Н.
  • Анисимова Н.А.
  • Овченкова И.И.
RU2256723C1
СПОСОБ ПОЛУЧЕНИЯ ИЗДЕЛИЙ ИЗ МОНОКРИСТАЛЛИЧЕСКИХ ЖАРОПРОЧНЫХ НИКЕЛЕВЫХ СПЛАВОВ 2007
  • Толорайя Владимир Николаевич
  • Каблов Евгений Николаевич
  • Демонис Иосиф Маркович
  • Остроухова Галина Алексеевна
  • Орехов Николай Григорьевич
  • Звездин Владимир Леонидович
  • Коряковцев Александр Сергеевич
RU2353701C1

Иллюстрации к изобретению RU 2 232 204 C2

Реферат патента 2004 года СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ ДЕТАЛЕЙ ИЗ ЖАРОПРОЧНЫХ СПЛАВОВ НА ОСНОВЕ НИКЕЛЯ

Изобретение относится к области термической обработки металлов и сплавов, а именно к термической обработке изделий из жаропрочных никелевых сплавов с равноосной, ориентированной и монокристаллической структурой. Предложен способ термической обработки деталей из жаропрочных сплавов на основе никеля, включающий три этапа: первый этап - нагрев до температуры в интервале (tп.p ÷ tэвт), выдержка и охлаждение со скоростью выше 100 град/мин, второй этап - нагрев до температуры в интервале (tн.p ÷ tп.p), где tп.p - температура полного растворения γ’- фазы, tэвт - температура плавления эвтектики (γ+γ'), tн.р - температура начала растворения γ'-фазы, выдержка и охлаждение со скоростью выше 100 град/мин и третий этап - нагрев до температуры вблизи tн.р, выдержка и охлаждение, при этом скорость нагрева на всех этапах выше 100 град/мин, длительность выдержек составляет до 300 с, а охлаждение на третьем этапе ведут со скоростью выше 100 град/мин, при этом каждый этап повторяют несколько раз. После третьего этапа проводят дополнительный отжиг при температуре ниже ty, где ty - температура упорядочения γ-твердого раствора. Технический результат - формирование в результате термической обработки размеров, формы, распределения частиц γ’-фазы и структуры γ- и γ'-твердых растворов, обеспечивающих высокий уровень эксплуатационных свойств сплавов на никелевой основе с равноосной, ориентированной или монокристаллической структурой при существенном сокращении длительности процесса термической обработки. 1 з.п. ф-лы, 3 ил.

Формула изобретения RU 2 232 204 C2

1. Способ термической обработки деталей из жаропрочных сплавов на основе никеля, включающий три этапа: первый этап - нагрев до температуры в интервале (tп.p ÷ tэвт), выдержка и охлаждение со скоростью выше 100 град./мин, второй этап - нагрев до температуры в интервале (tн.p ÷ tп.p), где tп.p - температура полного растворения γ'-фазы, tэвт - температура плавления эвтектики (γ+γ'), tн.р - температура начала растворения γ'-фазы, выдержка и охлаждение со скоростью выше 100 град./мин и третий этап - нагрев до температуры вблизи tн.р, выдержка и охлаждение, отличающийся тем, что скорость нагрева на всех этапах выше 100 град./мин, длительность выдержек составляет до 300 с, а охлаждение на третьем этапе ведут со скоростью выше 100 град./мин, при этом каждый этап повторяют несколько раз.2. Способ по п.1, отличающийся тем, что после выполнения третьего этапа проводят дополнительный отжиг при температуре ниже ty, где ty температура упорядочения γ - твердого раствора.

Документы, цитированные в отчете о поиске Патент 2004 года RU2232204C2

КАБЛОВ Е.Н
Литые лопатки газотурбинных двигателей
Сплавы, технология, покрытия
- М.: МИСИС, 2001, с.110-115
SU 1226864 А, 27.09.1999
СПОСОБ ВОССТАНОВЛЕНИЯ ЛОПАТОК ГАЗОВЫХ ТУРБИН ИЗ НИКЕЛЕВЫХ И КОБАЛЬТОВЫХ СПЛАВОВ 1994
  • Матвеев В.А.
  • Матвеев А.В.
RU2066702C1
US 4676846, 30.06.1987
СОСТАВ ШЛАКООБРАЗУЮЩЕГО БРИКЕТА ДЛЯ РАЗЛИВКИ СТАЛИ В ИЗЛОЖНИЦЫ 2003
  • Воробьев Н.И.
  • Лившиц Д.А.
  • Подкорытов А.Л.
  • Абарин В.И.
  • Антонов В.И.
  • Хяккинен В.И.
  • Братко Г.А.
  • Емельянов Г.Н.
  • Шабуров Д.В.
  • Шафигин Р.С.
RU2243270C1

RU 2 232 204 C2

Авторы

Иванов Ю.Н.

Михайлов А.Л.

Даты

2004-07-10Публикация

2002-09-09Подача