СПОСОБ ВОССТАНОВИТЕЛЬНОЙ ТЕРМИЧЕСКОЙ ОБРАБОТКИ ИЗДЕЛИЙ ИЗ ЖАРОПРОЧНЫХ НИКЕЛЕВЫХ СПЛАВОВ Российский патент 2012 года по МПК C22F1/10 

Описание патента на изобретение RU2459885C1

Изобретение относится к металлургии, а именно к восстановительной термической обработке изделий из жаропрочных никелевых сплавов с равноосной структурой, и может быть использовано в авиационном и энергетическом турбостроении при ремонте рабочих и направляющих лопаток турбины.

В процессе длительной эксплуатации под влиянием высокой температуры и напряжений в материале лопаток турбины, изготовленных из жаропрочных никелевых сплавов, происходит деградация структуры, заключающаяся в морфологических изменениях частиц упрочняющей γ'-фазы и формировании микропор в зернограничных оторочках, что суммарно приводит к потере работоспособности деталей. Эксплуатация лопаток турбины с такими дефектами недопустима, что выдвигает требование по проведению их восстановительного ремонта путем проведения соответствующей термической обработки.

Известен способ термической обработки деталей из жаропрочных сплавов на основе никеля [патент РФ №2232204, C22F 1/10, 2004 г.], включающий три этапа: первый этап - нагрев до температуры в интервале (tп.р÷tэвт), выдержка и охлаждение со скоростью выше 100 град./мин, второй этап - нагрев до температуры в интервале (tн.p÷tп.p), где tп.p - температура полного растворения γ'-фазы, tэвт - температура плавления эвтектики (γ+γ'), tн.p - температура начала растворения γ'-фазы, выдержка и охлаждение со скоростью выше 100 град./мин и третий этап - нагрев до температуры вблизи tн.p, выдержка и охлаждение, при этом скорость нагрева на всех этапах выше 100 град./мин, длительность выдержек составляет до 300 с, а охлаждение на третьем этапе ведут со скоростью выше 100 град./мин, при этом каждый этап повторяют несколько раз. Кроме того, после выполнения третьего этапа проводят дополнительный отжиг при температуре ниже tγ, где tγ - температура упорядочения γ-твердого раствора.

Недостатком указанного способа является то обстоятельство, что его можно осуществить в соляной ванне, содержащей расплав определенных солей щелочных металлов. Наличие солевого расплава допускает применение этого способа только для заготовок деталей. Для окончательно изготовленных деталей, в том числе для лопаток турбин, имеющих очень высокую точность «елочного» хвостовика, а также наличие сложнопрофильной внутренней полости для охлаждения лопаток, данный способ неприменим. Рабочие и направляющие лопатки турбины на этапе восстановительного ремонта являются окончательно готовыми, и попадание расплавленных солей щелочных металлов на их поверхности при последующей их эксплуатации вызовет значительные коррозионные повреждения металла изделий.

Известен способ термической обработки изделия из никелевого жаропрочного сплава [патент РФ №2220220, С22С 19/05, C22F 1/10, 2003 г.], включающий нагрев в контролируемой атмосфере, гомогенизирующий отжиг в интервале между температурой полного растворения упрочняющей γ'-фазы и температурой локального плавления, двухступенчатое старение и последующее охлаждение, при этом никелевый жаропрочный сплав и изделие из него перед гомогенизирующим отжигом подвергают предварительному трехступенчатому отжигу, где первая ступень отжига - нагрев до температуры Тл.пл 60±10°С (здесь Тл.пл - температура локального плавления), вторая ступень отжига - нагрев до температуры Тл.пл 40±10°С, третья ступень отжига - нагрев до температуры Тл.пл (15-25)°С, причем выдержка между нагревами составляет не менее 2 ч, а скорость нагрева составляет не более 1-2°С/мин.

Недостатком указанного способа является его применимость только для изделий с монокристаллической структурой, которые в процессе термической обработки допускают воздействие на них высокой температуры в течение длительного времени в связи с малыми скоростями нагрева и продолжительными выдержками.

Наиболее близким по технической сущности является способ восстановительной термической обработки изделий из жаропрочных хромникелевых сплавов [патент РФ №2329331, C22F 1/10, C21D 6/00, 2008 г.], включающий нагрев до температуры аустенизации, выдержку и контролируемое охлаждение, сначала медленное до 300-400°С в среде глубокоочищенного и осушенного водорода с точкой росы не выше минус 50°С, выдержкой при этой температуре в безокислительной среде 2-10 ч и затем на воздухе, при этом нагрев ведут в две стадии, на первой стадии до 900-1180°С со скоростью 15-20°С/ч с выдержкой 5-40 ч, затем до 1200-1250°С с выдержкой 5-10 ч. Кроме того, в процессе охлаждения осуществляют дополнительную выдержку при 1000-1100°С в течение 4-6 ч.

Недостатком прототипа является длительная выдержка деталей при высоких температурах, что вызывает огрубление границ зерен и значительно увеличивает стоимость ремонта. Кроме того, для жаропрочных никелевых сплавов с целью формирования благоприятной морфологии упрочняющей фазы устанавливается более высокая скорость охлаждения, чем заявленная в вышеприведенном способе.

Задачей, решаемой изобретением, является восстановление в результате термической обработки размеров, формы и распределения частиц γ'-фазы и структуры γ- и γ'-твердых растворов с обеспечением оптимальной структуры границ зерен, что суммарно обусловливает высокий уровень эксплуатационных свойств сплавов на никелевой основе с равноосной структурой при сокращении длительности воздействия на металл изделия высоких температур в процессе термической обработки. Кроме того, дополнительной задачей является восстановление в процессе термической обработки механических свойств никелевого жаропрочного сплава за счет упорядоченного расположения атомов легирующих элементов в кристаллической решетке никеля.

Задача решается таким образом, что в способе восстановительной термической обработки изделий из жаропрочных никелевых сплавов, включающем этапы нагрева, выдержки и охлаждения, в отличие от прототипа нагрев изделий осуществляется в вакуумной среде до температуры отжига, которая на 10…20°С превышает температуру полного растворения γ'-фазы, при этом этапы нагрева до температуры отжига и охлаждения осуществляются со скоростями 40…50°С/мин и 30…40°С/мин соответственно.

Предлагаемый способ позволяет восстановить размеры и форму частиц γ'-фазы, обеспечивает их равномерное распределение по объему материала изделия, благоприятно сказывается на структуре границ зерен и не приводит к оплавлению структурных составляющих жаропрочного никелевого сплава. В результате проведения термической обработки по предлагаемому способу происходит восстановление механических свойств никелевого жаропрочного сплава. Проведение процесса термической обработки в вакуумной среде обеспечивает отсутствие на поверхности окончательно изготовленных деталей типа лопаток турбины каких-либо веществ, способных вызвать высокотемпературную коррозию при последующей эксплуатации изделия.

Предложенный способ может быть использован на этапе ремонта для восстановления структуры и механических свойств никелевого жаропрочного сплава с равноосной структурой, используемого для изготовления рабочих и направляющих лопаток турбины авиационных двигателей и наземных энергетических установок.

Пример конкретной реализации способа.

Лопатки турбины из никелевых жаропрочных сплавов ЗМИ-3У и IN738LC после длительной наработки в составе газоперекачивающего агрегата подвергали восстановительной термической обработке. До проведения указанной термической обработки лопаток при металлографическом контроле в сплаве были обнаружены признаки деградации структуры (коагуляция упрочняющей γ'-фазы, образование мелкодисперсных выделений в виде «сыпи» и др.), благодаря которым уровень механических свойств материала оказался ниже нормируемых значений (таблица).

При проведении восстановительной термической обработки лопатки загружали в вакуумную печь, после чего создавали разреженную атмосферу (10-3…10-4 мм рт.ст.). Нагрев лопаток осуществляли со скоростью 45°С/мин до температуры 1190 и 1140°С для сплавов ЗМИ-3У и IN738LC соответственно. Длительность процесса термической обработки при указанных температурах составляла 2 часа. После окончания выдержки лопатки охлаждали со скоростью 35°С/мин. После завершения цикла восстановительной обработки изучали структуру материала лопаток и оценивали уровень механических свойств. Аналогичные исследования проводились для лопаток, подвергнутых термической обработке по прототипу. Результаты сравнительных испытаний представлены в таблице. Как видно из данных, представленных в таблице, после проведения восстановительной термической обработки по заявляемому способу механические свойства никелевых сплавов восстанавливаются до уровня, превышающего нормативные значения. Результаты, полученные после термической обработки по прототипу, не удовлетворяют нормативным требованиям: значения кратковременной прочности находятся вблизи нормативных, что в условиях длительной эксплуатации может вызвать преждевременную поломку деталей. Кроме того, показатели длительной прочности в 2…2,5 раза ниже, чем показатели, получаемые при использовании заявляемого способа. Указанные различия в уровне механических свойств объясняются результатами исследования структуры материала. Так, при использовании заявляемого способа признаки деградации структуры материала были полностью устранены, что положительно сказалось на уровне его работоспособности. Термическая обработка, проведенная по прототипу, вызвала огрубление границ зерен, привела к формированию упрочняющих частиц различных размеров, отличных от оптимального размера. В итоге была получена неудовлетворительная структура, для которой свойственна нестабильность механических свойств.

Таким образом, заявляемое изобретение позволяет на этапе ремонта окончательно готовых деталей за счет проведения термической обработки сплава в вакуумной среде при соблюдении скоростей нагрева и охлаждения восстанавливать структуру материала и его механические свойства.

Таблица Уровень механических свойств до и после проведения восстановительной термической обработки (ВТО) Состояние материала лопаток Кратковременная прочность при 20°С Длительная прочность Временное сопротивление, МПа Относительное удлинение, % Температура испытания, °С Напряжение, МПа Время до разрушения, час сплав ЗМИ-3У до ВТО 670…690 2,0…2,2 900 206 42…46 после ВТО по прототипу 700…725 3,0…3,5 не более 100 после ВТО по предлагаемому способу 800…820 5,3…6,3 более 200 Нормируемые значения ≥706 ≥2,5 900 206 ≥40 сплав IN738LC до ВТО 720…750 2,8…3,2 900 206 40…50 после ВТО по прототипу 750…820 4,0…5,6 не более 100 после ВТО по предлагаемому способу 860…980 12…16 более 250 Нормируемые значения ≥790 ≥3,0 900 206 ≥40

Похожие патенты RU2459885C1

название год авторы номер документа
НИКЕЛЕВЫЙ ЖАРОПРОЧНЫЙ СПЛАВ, ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО, И СПОСОБ ТЕРМООБРАБОТКИ СПЛАВА И ИЗДЕЛИЯ ИЗ НЕГО 2002
  • Каблов Е.Н.
  • Петрушин Н.В.
  • Демонис И.М.
  • Сидоров В.В.
RU2220220C1
СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ ДЕТАЛЕЙ ИЗ ЖАРОПРОЧНЫХ СПЛАВОВ НА ОСНОВЕ НИКЕЛЯ 2002
  • Иванов Ю.Н.
  • Михайлов А.Л.
RU2232204C2
СПОСОБ ОБРАБОТКИ ИЗДЕЛИЯ С РАВНООСНОЙ СТРУКТУРОЙ ИЗ ЖАРОПРОЧНОГО СПЛАВА 2003
  • Будиновский С.А.
  • Каблов Е.Н.
  • Мубояджян С.А.
RU2261935C2
СПОСОБ УПРОЧНЕНИЯ ИЗДЕЛИЯ ИЗ ЛИТЕЙНОГО СПЛАВА НА НИКЕЛЕВОЙ ОСНОВЕ 2003
  • Будиновский С.А.
  • Каблов Е.Н.
  • Мубояджян С.А.
RU2230822C1
ЛОПАТКА ГАЗОТУРБИННОЙ УСТАНОВКИ ИЗ ЖАРОПРОЧНОГО СПЛАВА НА ОСНОВЕ НИКЕЛЯ И СПОСОБ ЕЕ ИЗГОТОВЛЕНИЯ 2014
  • Авдюхин Сергей Павлович
  • Гасуль Михаил Рафаилович
  • Ковалев Геннадий Дмитриевич
  • Михайлов Владимир Евгеньевич
  • Кульмизев Александр Евгеньевич
  • Лубенец Владимир Платонович
  • Пахоменков Александр Владимирович
  • Скирта Сергей Михайлович
  • Скоробогатых Владимир Николаевич
  • Логашов Сергей Юрьевич
RU2581339C1
СПОСОБ ПОЛУЧЕНИЯ ИЗДЕЛИЙ ИЗ МОНОКРИСТАЛЛИЧЕСКИХ ЖАРОПРОЧНЫХ НИКЕЛЕВЫХ СПЛАВОВ 2007
  • Толорайя Владимир Николаевич
  • Каблов Евгений Николаевич
  • Демонис Иосиф Маркович
  • Остроухова Галина Алексеевна
  • Орехов Николай Григорьевич
  • Звездин Владимир Леонидович
  • Коряковцев Александр Сергеевич
RU2353701C1
СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ ОТЛИВОК ИЗ ЖАРОПРОЧНЫХ НИКЕЛЕВЫХ СПЛАВОВ 2014
  • Каблов Евгений Николаевич
  • Толорайя Владимир Николаевич
  • Остроухова Галина Алексеевна
  • Чубарова Елена Николаевна
  • Филонова Елена Владимировна
RU2572925C1
Способ аддитивного формирования изделия с комбинированной структурой из жаропрочного никелевого сплава с высокотемпературным подогревом 2023
  • Попович Анатолий Анатольевич
  • Борисов Евгений Владиславович
  • Полозов Игорь Анатольевич
  • Стариков Кирилл Андреевич
  • Соколова Виктория Владиславовна
  • Новиков Павел Александрович
RU2821638C1
СПОСОБ ОБРАБОТКИ ОТЛИВОК ИЗ ЖАРОПРОЧНЫХ НИКЕЛЕВЫХ СПЛАВОВ ДЛЯ МОНОКРИСТАЛЬНОГО ЛИТЬЯ 2007
  • Елисеев Юрий Сергеевич
  • Поклад Валерий Александрович
  • Оспенникова Ольга Геннадиевна
  • Ларионов Валентин Николаевич
  • Логунов Александр Вячеславович
  • Разумовский Игорь Михайлович
  • Разумовский Всеволод Игоревич
RU2361012C1
СПОСОБ ОБРАБОТКИ ИЗДЕЛИЙ СЛОЖНОЙ КОНФИГУРАЦИИ ИЗ ДИСПЕРСИОННО-ТВЕРДЕЮЩИХ СПЛАВОВ НА НИКЕЛЕВОЙ ОСНОВЕ 2005
  • Маляров Андрей Владимирович
  • Безъязычный Вячеслав Феоктистович
  • Лобанов Анатолий Васильевич
  • Сметанин Алексей Витальевич
RU2288295C1

Реферат патента 2012 года СПОСОБ ВОССТАНОВИТЕЛЬНОЙ ТЕРМИЧЕСКОЙ ОБРАБОТКИ ИЗДЕЛИЙ ИЗ ЖАРОПРОЧНЫХ НИКЕЛЕВЫХ СПЛАВОВ

Изобретение относится к металлургии, а именно к восстановительной термической обработке изделий из жаропрочных никелевых сплавов с равноосной структурой, и может быть использовано в авиационном и энергетическом турбостроении при ремонте рабочих и направляющих лопаток турбины. Способ восстановительной термической обработки изделий из жаропрочных никелевых сплавов включает этапы нагрева, выдержки и охлаждения. Обработку осуществляют в вакуумной среде при температуре отжига, на 10…20°С превышающей температуру полного растворения γ'-фазы, при этом этапы нагрева до температуры отжига и охлаждения с температуры отжига ведут со скоростями 40…50°С/мин и 30…40°С/мин соответственно. Восстанавливается структура и механические свойства никелевых сплавов без ухудшения качества поверхностного слоя. 1 табл., 1 пр.

Формула изобретения RU 2 459 885 C1

Способ восстановительной термической обработки изделий из жаропрочных никелевых сплавов, включающий этапы нагрева, выдержки и охлаждения, отличающийся тем, что обработку осуществляют в вакуумной среде при температуре отжига, на 10…20°С превышающей температуру полного растворения γ'-фазы, при этом этапы нагрева до температуры отжига и охлаждения с температуры отжига ведут со скоростями 40…50°С/мин и 30…40°С/мин соответственно.

Документы, цитированные в отчете о поиске Патент 2012 года RU2459885C1

СПОСОБ ВОССТАНОВИТЕЛЬНОЙ ТЕРМИЧЕСКОЙ ОБРАБОТКИ ИЗДЕЛИЙ ИЗ ЖАРОПРОЧНЫХ ХРОМОНИКЕЛЕВЫХ СПЛАВОВ 2006
  • Бородин Иван Петрович
  • Шатов Юрий Семенович
  • Ширяев Владимир Юрьевич
RU2329331C2
СПОСОБ ВОССТАНОВЛЕНИЯ ЛОПАТОК ГАЗОВЫХ ТУРБИН ИЗ НИКЕЛЕВЫХ И КОБАЛЬТОВЫХ СПЛАВОВ 1994
  • Матвеев В.А.
  • Матвеев А.В.
RU2066702C1
US 4753686 А, 28.06.1988
Запорное устройство 1988
  • Бовкун Александр Тимофеевич
SU1605074A1
Способ обработки целлюлозных материалов, с целью тонкого измельчения или переведения в коллоидальный раствор 1923
  • Петров Г.С.
SU2005A1

RU 2 459 885 C1

Авторы

Новиков Антон Владимирович

Быбин Андрей Александрович

Середенок Виктор Аркадьевич

Смыслова Марина Константиновна

Дементьев Алексей Владимирович

Иванова Ольга Ильинична

Даты

2012-08-27Публикация

2011-07-15Подача