Изобретение относится к комплексам навигации, управления и наведения подвижных объектов (летательных аппаратов, наземных подвижных объектов, судов и т.п.) - ПО.
В наиболее близком аналоге, приведенном в книге [1] (Бабич О.А. Обработка информации в навигационных комплексах. - М.: Машиностроение, 1991 г.) на стр. 6-16, 391-507, представлен информационно-управляющий комплекс (ИУК) подвижных объектов, включающий в себя навигационные, пилотажные и специальные (прицельные, обзорные, измерительные) датчики и системы, работающие на различных физических принципах: инерциальные навигационные системы (ИНС) и датчики; радиотехнические средства навигации, включающие радиосистемы ближней (РСБН) и дальней (РСДН) навигации, доплеровские измерители скорости и сноса (ДИСС), спутниковые навигационные системы (СНС); системы опознавания образов естественных и искусственных полей (рельефа земной поверхности, магнитного поля Земли, гравитационного поля Земли, поля радиолокационного контраста и др.); воздушные (аэрометрические) датчики и системы, включающие в себя систему воздушных сигналов (СВС) и датчики углов атаки и скольжения (ДУАС); обзорно-прицельные средства локации пространства, визирования ориентиров и слежения за подвижными и неподвижными объектами (астровизирные средства, тепло-, оптико-, радиовизирные средства), а также вычислительную систему, обеспечивающую информационный обмен между датчиками и системами и расчет необходимых навигационно-пилотажных и специальных параметров состояния ПО. Вычислительная система комплекса при этом содержит следующие блоки: блок ввода-вывода и управления информационным обменом, обеспечивающим информационный обмен между компонентами комплекса; блок формирования параметров состояния ПО, обеспечивающий расчет основных информационных параметров состояния и движения ПО (азимуты и дальности до ориентиров, отклонения от заданной траектории, координаты, скорости, ускорения, углы ориентации ПО - см. [1], стр. 7); блок комплексной обработки информации, поступающей от разных измерителей.
Комплекс обеспечивает обработку информации различных датчиков и систем, определение параметров движения ПО в целом и его отдельных точек, информационное взаимодействие с экипажем, управление состоянием ПО. Из-за наличия инструментальных и методических погрешностей датчиков и систем, из-за воздействия естественных и искусственных помех, из-за неточности априорных знаний о геофизических полях, о движении и состоянии атмосферы, о геометрии пространства, о координатах и движении радиомаяков, ориентиров, светил, спутников и проч., - параметры движения и состояния ПО определяются с ошибками. В вычислителе комплекса реализуется (см. [1], стр. 391; [5], стр. 26-28, 80-271) метод комплексирования информации, предусматривающий проведение статистической фильтрации информации двух или нескольких систем и получение корректирующих поправок для одной из них (корректируемой). На основе скорректированной информации осуществляется расчет параметров состояния и движения ПО (азимуты и дальности до ориентиров, отклонения от заданной траектории, координаты, скорости, ускорения, углы ориентации ПО - см., например, литературу [1], стр. 171-301).
Недостатками наиболее близкого аналога являются неточное приведение информации к точкам ПО, в которых необходимы решения конкретных частных задач ПО и в которых могут отсутствовать измерительные датчики и системы (места установки оружия, элементы горизонтального и вертикального оперения и т.д.).
Задачей изобретения является повышение точности работы комплекса и, как следствие этого, повышение эффективности использования подвижных объектов, снабженных данным комплексом.
Достигается указанный результат тем, что информационно-управляющий комплекс, содержащий взаимосоединенные входами-выходами по магистрали информационного обмена систем радиотехнические средства навигации, обзорно-прицельные средства, системы опознавания образов, инерциальные датчики и системы, воздушные датчики и системы, индикационно-управляющие устройства, вычислительную систему комплекса, включающую взаимосоединенные по магистрали вычислительного информационного обмена блок формирования параметров состояния, блок комплексной обработки информации, блок ввода-вывода и управления информационным обменом, другой вход-выход которого является входом-выходом вычислительной системы комплекса, дополнительно снабжен введенными в состав вычислительной системы комплекса блоком приведения информации, блоком синтеза параметров движения и состояния точек ПО, в которых отсутствуют измерительные датчики и системы, блоком расчета параметров взаимно-относительных движений разных точек ПО.
На чертеже представлена блок-схема информационно-управляющего комплекса, содержащего:
1 - радиотехнические средства навигации РТСН;
2 - обзорно-прицельные средства ОПС;
3 - системы опознавания образов СОО;
4 - инерциальные датчики и системы ИДС;
5 - воздушные датчики и системы ВДС;
6 - магистраль информационного обмена систем МИОС;
15 - индикационно-управляющие устройства ИУУ;
7 - вычислительную систему комплекса ВСК.
При этом в состав ВСК 7 входят следующие блоки:
8 - блок ввода-вывода информации и управления информационным обменом ВВУИО;
9 - блок формирования параметров состояния ФПС;
10 - блок комплексной обработки информации КОИ;
11 - блок приведения информации ПИ;
12 - блок синтеза параметров движения и состояния СПДС;
13 - блок расчета параметров движений и деформаций РПДД;
14 - магистраль вычислительного информационного обмена МВИО.
Информационная взаимосвязь систем ИУК осуществляется по МИОС 6 (на чертеже обозначена тонкой сплошной линией).
Информационный обмен между входами-выходами вычислительно-логических блоков ВСК 7 осуществляется по МВИО 14 (на чертеже обозначена тонкой сплошной линией).
Блоки 1-5, блок 15 подключены своими входами/выходами к магистрали информационного обмена систем, к которой подключены также вход/выход ВСК 7, при этом входом/выходом ВСК 7 являются вход/выход блока ВВУИО 8, а другой вход/выход блока ВВУИО 8 подключен к внутренней магистрали вычислительного информационного обмена МВИО 14, к которой подключены также входы/выходы блоков 9-13.
Блоки 1-5 представляют собой известные датчики и системы бортового оборудования ПО, описанные в литературе, например [1], стр. 8-16, 171-243, 316-317, 325-327, 374-385; [5], стр. 6-22; [6], стр. 229-242. В состав блока РТСН 1 входят: РСБН, измеряющая азимут радиомаяка и дальность до него, с помощью которых при известных координатах радиомаяка решается задача определения координат объекта; РСДН, измеряющая дальности до нескольких наземных радиостанций, с помощью которых при известных координатах станций решается задача определения координат объекта; ДИСС, измеряющая доплеровские сдвиги частот излучаемых радиосигналов, с помощью которых решается задача определения вектора скорости объекта; СНС, измеряющая временную задержку, фазовый сдвиг и доплеровский сдвиг частоты радиосигналов от космических спутников, с помощью которых при известных параметрах движения спутников решается задача определения времени, координат и скорости объекта; другие радиотехнические средства навигации, например радиовысотомер, радиокомпас и т.п. В состав блока ОПС 2 входят различные тепловые, оптические, радиолокационные средства визирования ориентиров (целей), измеряющие дальности до ориентиров и/или углы их визирования, с помощью которых при известных координатах ориентиров решается задача определения координат объекта, а при известных координатах объекта - задача определения координат целей. В состав блока СОО 3 входят измерители параметров различных геофизических поверхностных и пространственных полей: поля рельефа, магнитного поля, гравитационного поля, поля радиолокационного контраста и др., с помощью которых при известных закономерностях распределений этих полей в околоземном пространстве решается задача определения координат объекта, а при известных координатах объекта - задача картографирования указанных полей. В состав блока ИДС 4 входят: ИНС, решающие задачу автономного счисления скорости, координат и угловой ориентации объекта на основе измеряемых с помощью акселерометров и гироскопов, входящих в ИНС, ускорений и угловых скоростей (или углов ориентации) объекта; курсовертикали, решающие задачу счисления скорости и угловой ориентации объекта на основе измерительной информации гироскопов и акселерометров; распределенные по объекту акселерометры и гироскопы, измеряющие ускорения и угловые скорости (углы ориентации) в местах их расположения. В состав блока ВДС 5 входят СВС, измеряющие статические, динамические, полные давления воздуха, с помощью которых решаются задачи определения высоты и скорости объекта относительно атмосферы; ДУАС, измеряющие направления обтекающих воздушных потоков; распределенные по объекту воздушные датчики (приемники воздушных давлений, датчики углов атаки и скольжения). Входящие в состав блоков ИДС 4 и ВДС 5 распределенные по объекту акселерометрические, гироскопические, воздушные датчики измеряют величины J
Блок ИУУ 15 представляет собой совокупность бортовых индикационно-управляющих устройств объекта, описанных в литературе, например [6], стр. 229-242, в число которых входят, например, система управления оружием (СУО), средства индикации и отображения информации, система связи, система автоматического управления (САУ), система дистанционного управления (СДУ), пульт управления.
Блоки МИОС 6 и МВИО 14 представляют собой известные (описанные, например, в книге [7], стр. 21-24, 394-406) линии связи и информационного обмена, например, по последовательному коду, по параллельному коду, мультиплексные и др.
Блок ВВУИО 8 представляет собой известное устройство (описанное, например, в книге [7], стр. 16-24, 386-406, 436-440) сопряжения вычислителя с линиями связи, осуществляющее прием, контроль и выдачу информации.
Блоки ФПС 9, КОИ 10, ПИ 11, СПДС 12, РПДД 13 выполнены, например, в виде однопроцессорных вычислителей ([7], стр. 31).
Блок ФПС 9 обеспечивает расчет параметров состояния ПО, включающих в себя координаты, параметры движения и ориентации ПО в целом и отдельных его точек относительно базовой системы отсчета, атмосферы, земной поверхности, ориентиров и т.п., на основе решения уравнений, связывающих эти параметры с измеряемыми величинами, поступающими в магистраль МВИО 14 (см., например, книгу [1], стр. 7-8, 117-158, 171-283).
Блок КОИ 10 обеспечивает комплексную обработку информации систем путем формирования и учета оценок погрешностей параметров состояния (см., например, книгу [1], стр. 40-81, 391-507).
Дополнительно введенный блок ПИ 11 обеспечивает приведение сопоставляемой информации разных измерителей (РТСН, ОПС, СОО, ИДС, ВДС) к общей системе отсчета.
Дополнительно введенный блок СПДС 12 обеспечивает синтез параметров движения и состояния точек ПО, в которых отсутствуют измерительные датчики и системы.
Дополнительно введенный блок РПДД 13 обеспечивает расчет параметров взаимно-относительных движений точек ПО и деформаций ПО.
ИУК работает следующим образом.
Измеряемая информация о параметрах движения МЛА Jn (n=ИДС, ВДС, РТСН, ОПС, СОО) из блоков 1-5 поступает через магистраль МИОС 6, блок ВВУИО 8 в магистраль МВИО 14. Из магистрали МВИО 14 эта информация поступает на вход блоков ФПС 9 и КОИ 10.
В блоке ФПС 9 производится обработка информации различных датчиков и систем в соответствии с общим уравнением (см., например [1], стр. 171-178, 189-195, 216-224, 225-229, 236-240, 316-327, 374-385):
Nn - многомерный вектор определяемых параметров, включающий координаты, скорость, ускорение, углы ориентации ЛА;
Jn - измерительная информация, поступающая от датчиков и систем;
Кn - априорная информация, используемая в алгоритмах и включающая в себя информацию о координатах и скоростях спутников, радиомаяков, небесных светил, наземных ориентиров, геометрические характеристики навигационного пространства, параметры геофизических полей (атмосферы, гравитационного, магнитного, рельефа, радионавигационных и т.п.);
;n - алгоритм (оператор) обработки информации датчиков и систем;
n - индекс, принимающий значения: ИДС (инерциальные датчики и системы), ВДС (воздушные датчики и системы), РТСН (радиотехнические средства навигации), ОПС (обзорно-прицельные средства), СОО (системы опознавания образов).
В блоке ФПС 9 определяются многомерные вектора Nn (n=ИДС, ВДС, РТСН, ОПС, СОО), основные параметры состояния и движения ПО (азимуты и дальности до ориентиров, отклонения от заданной траектории, координаты, скорости, ускорения, углы ориентации ПО), необходимые для решения конкретных частных задач комплекса.
В блоке КОИ 10 вычитанием из вектора корректируемой информации вектора корректирующей информации строится невязка Z между корректируемой и корректирующей информацией и осуществляется обработка невязки Z по алгоритму нестационарной вычислительно-устойчивой фильтрации (см. [1], стр. 40-45; [5], стр. 96-108) и для каждого k-того момента времени формируется оценка вектора ошибок Х в виде:
;Хk - прогнозируемое значение вектора Х в k-тый момент времени;
- оценка значения вектора Х в k-тый момент времени,
на основе которой в блоке КОИ 10 определяются корректирующие поправки к многомерным векторам Nn (n=ИДС, ВДС, РТСН, ОПС, СОО).
Полученные данные о многомерных векторах Nn (n=ИДС, ВДС, РТСН, ОПС, СОО) поступают через магистраль МВИО 14 также на входы блоков ПИ 11, СПДС 12, РПДД 13. Необходимая информация о различных параметрах состояния объекта поступает из ВСК 7 в магистраль МВИО 14, а оттуда - в блок ИУУ 15 для индикации на пульте индикации и формирования соответствующих управляющих сигналов в САУ, СДУ, СУО.
В блоке ПИ 11 осуществляется приведение информации из i-ой в j-ую локальную систему отсчета с помощью преобразований, описываемых формулами вида:
а также вида:
в которых
i, j - номера точек, которые выбираются из перечня ii, i2, i3, i4, i5 в любых сочетаниях в зависимости от конкретной задачи, индекс n принимает одно из значений: ИДС, ВДС, РТСН, ОПС, СОО в зависимости от вида приводимой информации,
величины ΔN
i1, i2, i3, i4, i2 - номера точек на ПО, в которых установлены датчики и системы ИДС,ВДС, РТСН, ОПС, СОО соответственно.
Величины ΔN
Введение в состав ВСК 7 описанного блока ПИ 11 обеспечивает точное приведение информации различных систем комплекса к общей системе отсчета, вследствие чего повышается точность комплексной обработки информации систем и устраняется недостаток наиболее близкого аналога.
В блок СПДС 12 через магистраль МВИО 14 поступает информация о многомерных векторах J
i - номера точек, выбираются из перечня ii, i2, i3, i4, i5 в зависимости от конкретной задачи;
j - номер точки ПО, для которой синтезируются параметры.
Величины ΔN
Введение в состав ВСК 7 описанного блока СПДС 12 обеспечивает синтез информации о состоянии и движении тех точек ПО, в которых отсутствуют измерительные датчики и системы, но состояние и движение которых необходимо знать для точного решения ряда задач, например, прицеливания, наведения, специального маневрирования. Тем самым устраняется существенный недостаток наиболее близкого аналога, состоящий в неточном приведении информации к таким точкам.
На вход блока РПДД 13 через магистраль МВИО 14 поступает информация о многомерных векторах J
где ri/j, Vi/j, Ai/j - линейное смещение, линейная скорость, линейное ускорение i-ой точки твердого тела относительно j-ой точки твердого тела;
αi/j, ωi/j, εi/j - угловое смещение, угловая скорость, угловое ускорение системы отсчета, связанной с i-ой точкой твердого тела, относительно системы отсчета, связанной с j-ой точкой твердого тела;
ε, ω - абсолютное угловое ускорение и абсолютная угловая скорость твердого тела, одинаковые для всех его точек.
При этом угловое ускорение ε и угловая скорость ω твердого тела измеряются с помощью гироскопических датчиков или с помощью акселерометрических датчиков (см. например. литературу [4], стр. 15-37, 228-252) из состава блока ИДС 4. Используя измерительную информацию J
Законы движения из-за деформаций описываются известными уравнениями, например, в литературе [3], стр. 31-34, 88, 116-126, 171-172, 181-187, 276-310. Для деформации кручения (например, скрутки крыла, мачты т.п.) угол ϕi/j относительного закручивания сечений, проходящих через i-ую и j-ую точки ПО (принадлежащих, например, крылу или фюзеляжу), отыщется из уравнения вида (см. [3], стр. 171):
где М(х) - момент сил закручивания; G - модуль упругости второго рода; I - приведенный полярный момент инерции фигуры сечения; xi и xj - условные координаты i-ой и j-ой точек относительно выбранной системы отсчета;
для деформации изгиба (например, изгиба крыла, фюзеляжа, мачты, корпуса и т.п.) угол θi/j относительного поворота сечений, проходящих через i-ую и j-ую точки, и относительный прогиб Yi/j оси, проходящей через i-ую и j-ую точки, отыщутся из уравнений (см. [3], стр. 279):
где М(х) - изгибающий момент сил; Е - модуль упругости первого рода (модуль Юнга); I - момент инерции фигуры сечения; хi и xj - условные координаты i-ой и j-ой точек относительно выбранной системы отсчета.
Моменты сил, действующие на элементы конструкции ПО, могут быть рассчитаны на основе обработки измерений сил с помощью акселерометрических датчиков - датчиков удельной силы (см. [4], стр. 15). Используя измерительную информацию J
где ri/j - известный постоянный по величине вектор положения i-ой точки твердого тела относительно j-ой точки твердого тела; Ri/c, Rj/в - измеряемые с помощью систем, например, блока РТСН 1 или блока ОПС 2, установленных в i-ой и j-ой точках соответственно, радиус-векторы между этими точками ПО и точками С и В окружающего пространства (например, центра Земли - при измерениях с помощью СНС; ориентира - при измерениях с помощью блока ОПС 2, и т.д.); Rc/в - известный радиус-вектор относительного положения указанных точек С и В.
Производная линейной деформации - вектор S’i - отыщется из уравнений:
где R’i/c, R’j/в - измеряемые с помощью систем, установленных в i-ой и j-ой точках, производные радиус-векторов между этими точками ПО и точками С и В окружающего пространства; R’c/в - известная производная радиус-вектора относительного положения указанных точек С и В (скорость сближения точек С и В). Информация о величинах Ri/c, Ri/в, R’i/c, R’j/в содержится в многомерных векторах J
Введение в состав ВСК 7 описанного блока РПДД 13 позволяет решать задачи определения взаимно-относительных движений и деформаций ПО, вследствие чего обеспечивается возможность точного приведения информации различных систем комплекса к разным системам отсчета, а также синтеза такой информации для любых точек ПО.
Таким образом, на примерах технической реализации показано достижение технического результата в части повышения точности работы комплекса и, как следствие, повышение эффективности применения оснащаемых им подвижных объектов.
Источники информации
1. Бабич О.А. Обработка информации в навигационных комплексах. - М.: Машиностроение, 1991 г.
2. Никитин Н.Н. Курс теоретической механики. - М.: Высшая школа, 1990 г.
3. Беляев Н.М. Сопротивление материалов. - М.: Наука, 1976 г.
4. Андреев В.Д. Теория инерциальной навигации. Автономные системы. - М.: Наука, 1966 г.
5. Ривкин С.С., Ивановский Р.И., Костров А.В. Статистическая оптимизация навигационных систем. - Л.: Судостроение, 1976 г.
6. Фомин А.В. Су-27. История истребителя. - М.: РА “Интервестник”, 2000 г.
7. Преснухин Л.Н., Нестеров П.В. Цифровые вычислительные машины. - М.: Высшая школа, 1981 г.
8. Корн Г., Корн Т. Справочник по математике для научных работников и инженеров. - М.: Наука, 1977 г.
название | год | авторы | номер документа |
---|---|---|---|
ИНФОРМАЦИОННО-УПРАВЛЯЮЩИЙ КОМПЛЕКС МНОГОФУНКЦИОНАЛЬНЫХ ЛЕТАТЕЛЬНЫХ АППАРАТОВ | 2003 |
|
RU2232376C1 |
РАСПРЕДЕЛЕННЫЙ ИНФОРМАЦИОННО-УПРАВЛЯЮЩИЙ КОМПЛЕКС ГРУППЫ МНОГОФУНКЦИОНАЛЬНЫХ ЛЕТАТЕЛЬНЫХ АППАРАТОВ | 2003 |
|
RU2232102C1 |
ПРИЦЕЛЬНО-НАВИГАЦИОННЫЙ КОМПЛЕКС ОБОРУДОВАНИЯ МНОГОФУНКЦИОНАЛЬНОГО САМОЛЕТА | 2009 |
|
RU2392198C1 |
КОМПЛЕКСНАЯ НАВИГАЦИОННАЯ СИСТЕМА | 2004 |
|
RU2260177C1 |
КОМПЛЕКСНАЯ НАВИГАЦИОННАЯ СИСТЕМА | 2004 |
|
RU2265190C1 |
КОМПЛЕКСНАЯ НАВИГАЦИОННАЯ СИСТЕМА | 2004 |
|
RU2263281C1 |
МНОГОФУНКЦИОНАЛЬНЫЙ САМОЛЕТ | 2000 |
|
RU2177897C1 |
КОМПЛЕКСНАЯ ИНФОРМАЦИОННАЯ СИСТЕМА | 2004 |
|
RU2263280C1 |
ПРИЦЕЛЬНО-НАВИГАЦИОННЫЙ КОМПЛЕКС | 1998 |
|
RU2146804C1 |
СИСТЕМА КОМПЛЕКСНОЙ ОБРАБОТКИ ИНФОРМАЦИИ РАДИОНАВИГАЦИОННЫХ И АВТОНОМНЫХ СРЕДСТВ НАВИГАЦИИ ДЛЯ ОПРЕДЕЛЕНИЯ ДЕЙСТВИТЕЛЬНЫХ ЗНАЧЕНИЙ ПАРАМЕТРОВ САМОЛЕТОВОЖДЕНИЯ | 2012 |
|
RU2487419C1 |
Изобретение относится к средствам решения задач навигации, управления и наведения подвижных нежестких объектов. По магистрали информационного обмена систем соединены входами-выходами радиотехнические средства навигации, обзорно-прицельные средства, системы опознавания образов, инерциальные датчики и системы, воздушные датчики и системы, индикационно-управляющие устройства и вычислительная система. Последняя включает в себя взаимосоединенные по магистрали вычислительного информационного обмена блок формирования параметров состояния, блок комплексной обработки информации, блок ввода-вывода и управления информационным обменом, блок приведения информации, блок синтеза параметров движения и состояния и блок расчета параметров движений и деформаций. Изобретение позволяет повысить точность работы комплекса и эффективность использования подвижных объектов. 1 ил.
Распределенный информационно-управляющий комплекс подвижных объектов, содержащий взаимосоединенные входами-выходами по магистрали информационного обмена систем радиотехнические средства навигации, обзорно-прицельные средства, системы опознавания образов, инерциальные датчики и системы, воздушные датчики и системы, индикационно-управляющие устройства, вычислительную систему комплекса, включающую взаимосоединенные по магистрали вычислительного информационного обмена блок формирования параметров состояния, блок комплексной обработки информации, блок ввода-вывода и управления информационным обменом, другой вход-выход которого является входом-выходом вычислительной системы комплекса, отличающийся тем, что он дополнительно снабжен включенными в состав вычислительной системы комплекса блоком приведения информации, блоком синтеза параметров движения и состояния, блоком расчета параметров движений и деформаций, соединенных между собой и с блоком формирования параметров состояния, с блоком комплексной обработки информации, с блоком ввода-вывода и управления информационным обменом вычислительной системы по магистрали вычислительного информационного обмена.
БАБИЧ О.А | |||
Обработка информации в навигационных комплексах | |||
- М.: Машиностроение, 1991, с | |||
Приспособление для точного наложения листов бумаги при снятии оттисков | 1922 |
|
SU6A1 |
БОРТОВОЙ ИНФОРМАЦИОННО-УПРАВЛЯЮЩИЙ КОМПЛЕКС МНОГОЦЕЛЕВОГО ДВУХМЕСТНОГО САМОЛЕТА | 2000 |
|
RU2166794C1 |
МНОГОФУНКЦИОНАЛЬНЫЙ САМОЛЕТ | 2000 |
|
RU2177897C1 |
НАВИГАЦИОННЫЙ КОМПЛЕКС ЛЕТАТЕЛЬНОГО АППАРАТА | 2000 |
|
RU2170409C1 |
Авторы
Даты
2004-07-10—Публикация
2003-09-25—Подача