Изобретение относится к порошковой металлургии, в частности к спеченным твердым сплавам на основе диборида титана, которые могут быть использованы для изготовления пластин, предназначенных для ударно-вращательного бурения нефтяных и газовых скважин.
Наиболее близким по технической сущности к заявляемому изобретению является твердый сплав на основе диборида титана, представляющий собой композицию, структура которой состоит из зерен борида титана и карбида вольфрама, сцементированных матрицей-кобальтом, имеющей следующий состав, вес.%:
Карбид вольфрама 23-25
Кобальт 13-13,5
Диборид титана Остальное
[а.с. №514031, 1974 г. - прототип]
Недостатками указанного материала являются низкая абразивная способность, высокая температура спекания, а также высокая стоимость исходных компонентов. Низкая абразивная способность твердого сплава обусловлена низкими упругими свойствами кобальта, не позволяющими многократно деформировать матрицу при ударных нагрузках, что ведет к выкрашиванию твердых частиц борида титана и карбида вольфрама и, как следствие, к трещинообразованию твердого сплава.
Техническая задача - повышение абразивной способности спеченного твердого сплава за счет повышения его микротвердости и упругопластических свойств матрицы.
Решение технической задачи заключается в том, что спеченный твердый сплав, содержащий диборид титана, дополнительно содержит диборид хрома, ферромарганец и феррованадий при следующем соотношении компонентов, вес.%:
Диборид титана 25-25,5
Диборид хрома 5-6
Ферромарганец 58-60
Феррованадий Остальное
Спеченный твердый сплав представляет собой композицию, структура которой состоит из зерен диборидов титана и хрома, сцементированных матрицей, состоящей из ферросплавов марганца и ванадия. Высокая абразивная способность заявляемого твердого сплава достигается за счет повышения упругопластических свойств матрицы и микротвердости зерен диборидов титана и хрома. Высокие упругопластические свойства матрицы обусловлены образованием аустенитно-мартенситной структуры при взаимодействии сплавов ферромарганца и феррованадия, позволяющей многократно и обратимо деформировать зерна диборидов титана и хрома. А повышение микротвердости твердого сплава обусловлено образованием сложных карбоборидов при диффузии атомов ванадия и части свободного углерода матрицы в зерна диборидов, что обеспечивает твердому сплаву высокое значение абразивной способности - что и является новым техническим эффектом заявляемого изобретения.
Заявленный твердый сплав получают следующим образом. Шихта готовится методом механического смешивания компонентов диборида титана и хрома, ферромарганца и феррованадия в среде этилового спирта в аппарате с вихревым слоем типа АВС П/100, №2. Время смешивания 12 часов. Готовая шихта прессуется на прессе в брикеты при давлении 750 МПа. Далее брикеты загружаются в камеру вакуумной печи для более полного и быстрого спекания, а также для повышения плотности твердого сплава. В печи поддерживается вакуум 5-10 Па. Скорость подъема температуры 6°С/мин. Получение спеченного твердого сплава обеспечивается при температуре 1300°С и выдержке 75 минут.
Примеры конкретного исполнения.
Для экспериментальной проверки заявляемого твердого сплава были подготовлены несколько составов шихты, отличающиеся друг от друга различным составом компонентов в их весовом соотношении, три из которых показали оптимальные результаты.
Абразивную способность образцов определяли по типовой методике на установке МГСУ-ТМ с применением абразива - карбоборунд, принцип действия которой основан на истирании образца карбоборундом.
Пример 1.
Для получения спеченного твердого сплава вышеизложенным способом были использованы компоненты в следующем соотношении, вес.%:
TiB2 25
CrB2 5
FeMn 60
FeV 10
Абразивность при этом составила 0,42 г.
Пример 2.
Для получения спеченного твердого сплава вышеизложенным способом были использованы компоненты в следующем соотношении, вес.%:
ТiВ2 32
СrВ2 8
FeMn 50
FeV 10
Абразивность при этом составила 0,37 г.
Пример 3.
Для получения спеченного твердого сплава вышеизложенным способом были использованы компоненты в следующем соотношении, вес.%:
TiB2 45
CrB2 5
FeMn 40
FeV 10
Абразивность при этом составила 0,32 г.
Результаты проведенных исследований представлены в таблице.
Таким образом, заявляемый твердый сплав позволяет повысить относительную абразивную способность по сравнению с известным на 12%, при температуре спекания 1300°С, а использование недорогих исходных компонентов ферромарганца и феррованадия позволяет снизить затраты на его получение.
название | год | авторы | номер документа |
---|---|---|---|
ШИХТА ДЛЯ ПОЛУЧЕНИЯ ЛИТОГО ТУГОПЛАВКОГО НЕОРГАНИЧЕСКОГО МАТЕРИАЛА В РЕЖИМЕ ГОРЕНИЯ | 1992 |
|
RU2016111C1 |
ПОРОШКОВАЯ ПРОВОЛОКА ДЛЯ НАПЛАВКИ | 2015 |
|
RU2619547C1 |
СОСТАВ ЭЛЕКТРОДНОГО ПОКРЫТИЯ ДЛЯ ПОЛУЧЕНИЯ ИЗНОСОУДАРОСТОЙКОГО СПЛАВА, ЭКСПЛУАТИРУЕМОГО В АБРАЗИВНОЙ СРЕДЕ | 1995 |
|
RU2098251C1 |
ПОРОШКОВАЯ ПРОВОЛОКА | 2010 |
|
RU2446930C1 |
Материалы на основе тетраборида хрома и способы их получения | 2020 |
|
RU2753339C1 |
Керамический композит и шихта для его получения | 2015 |
|
RU2622276C2 |
СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИТА НА ОСНОВЕ БОРИДОВ, КАРБИДОВ МЕТАЛЛОВ IV-VI И VIII ГРУПП | 2003 |
|
RU2228238C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ КЕРАМИЧЕСКОГО МАТЕРИАЛА НА ОСНОВЕ КАРБИДА БОРА | 1997 |
|
RU2143411C1 |
ШИХТА ДЛЯ ИЗГОТОВЛЕНИЯ ЭЛЕКТРОДА ДЛЯ ЭЛЕКТРОИСКРОВОГО ЛЕГИРОВАНИЯ | 2004 |
|
RU2280093C2 |
КОМПОЗИЦИОННЫЙ ПОРОШОК ДЛЯ ГАЗОТЕРМИЧЕСКИХ ПОКРЫТИЙ | 1994 |
|
RU2088688C1 |
Изобретение относится к порошковой металлургии, в частности к спеченным твердым сплавам. Может использоваться для изготовления пластин, предназначенных для ударно-вращательного бурения нефтяных и газовых скважин. Предложен спеченный твердый сплав, содержащий, вес. %: диборид титана 25-25,5; диборид хрома 5-6; ферромарганец 58-60; феррованадий - остальное. Техническим результатом является повышение абразивной способности. 1 табл.
Спеченный твердый сплав, содержащий диборид титана, отличающийся тем, что он дополнительно содержит диборид хрома, ферромарганец и феррованадий при следующем соотношении компонентов, вес.%:
Спеченный твердый сплав на основе диборида титана | 1974 |
|
SU514031A1 |
СИСТЕМА ОХЛАЖДЕНИЯ ЭЛЕКТРИЧЕСКОЙ МАШИНЫ ЗАКРЫТОГО ИСПОЛНЕНИЯ | 2001 |
|
RU2201647C2 |
Захват для бурильных труб | 1973 |
|
SU866119A1 |
US 5108670 A, 28.04.1992. |
Авторы
Даты
2005-01-20—Публикация
2003-10-13—Подача