АНОДНАЯ ЯЧЕЙКА ДЛЯ ЭЛЕКТРОВЫДЕЛЕНИЯ ЦВЕТНЫХ МЕТАЛЛОВ Российский патент 2009 года по МПК C25C7/02 C25C1/08 C25C7/04 

Описание патента на изобретение RU2353712C2

Изобретение относится к области металлургии тяжелых цветных металлов, в частности к конструкциям диафрагменных ячеек для электролитического извлечения никеля из водных растворов.

Известна конструкция электролизной ванны, имеющей катодное пространство с католитом и анодную ячейку, образованную корпусом с диафрагмой, включающей размещенный в ней электрод, газовую камеру, размещенную в верхней части корпуса ячейки и соединенную с системой отвода газа, приспособления для подвода электролита в ячейку и его отвода, при этом корпус ячейки выполнен в виде усеченной пирамиды с обращенной вниз открытой вершиной, а приспособление для подвода электролита в ячейку выполнено в виде продолжающего корпус коробчатого сопла с отверстиями в боковых стенках и пластин, закрепленных на нижних боковых гранях сопла с образованием острого угла между ними и стенками сопла (Патент РФ №2206640 «Электродный комплект»).

Недостатками данной конструкции является невозможность эвакуации из ячейки анолита с постоянно заданной скоростью, что приводит к скачкам концентрации серной кислоты в ячейке и, как следствие, к повышению концентрации кислоты в катодном пространстве. В свою очередь, повышенная концентрация серной кислоты в катодном пространстве приводит к необходимости увеличения расхода католита на осуществление процесса электролиза, ухудшению качества катодного осадка, увеличению выделения гидроаэрозолей никеля и снижению катодного выхода по току. Кроме того, сложная конструкция ячейки значительно повышает ее себестоимость и приводит к увеличению эксплуатационных затрат.

Наиболее близкой по своей технической сущности является конструкция ванны, имеющая катодное пространство с католитом и снабженная ячейкой, включающей жесткий каркас, диафрагменный мешок с помещенным в него нерастворимым анодом, приспособление в виде ненатянутой сетки, предотвращающее соприкосновение анода с диафрагменным мешком, а также устройство для вывода анолита и выделяющихся на аноде газообразных веществ при помощи разрежения, выполненное в виде трубки, прикрепленной к диафрагменному мешку (Патент № US 4201653 Electrowinning cell with bagged anode).

Недостатком данной конструкции является невозможность обеспечения заданного перепада между уровнями католита и анолита, что приводит к повышению концентрации кислоты в катодном пространстве и, как следствие, к необходимости увеличения расхода католита на осуществление процесса электролиза, ухудшению качества катодного осадка, увеличению выделения гидроаэрозолей никеля и снижению катодного выхода по току. Кроме того, конструкция приспособления для предотвращения соприкосновения анода с диафрагменным мешком, выполненная в виде ненатянутой сетки, не позволяет гарантированно избежать соприкосновения анода с диафрагмой, что приводит к выделению газовой фазы в точках соприкосновения. Вследствие этого, увеличивается вероятность прогара диафрагмы, что, в свою очередь, влечет за собой увеличение эксплуатационных затрат.

Задача изобретения заключается в улучшении экологической обстановки в рабочей зоне, повышении эффективности процесса электролиза, в улучшении качества катодного никеля, а также в снижении расхода диафрагменной ткани.

Технический результат, на достижение которого направлено предлагаемое изобретение, заключается в обеспечении заданного перепада уровней католита и анолита и в исключении соприкосновения анода с диафрагменным мешком.

Для получения указанного технического результата в ванну устанавливают анодную ячейку для электровыделения цветных металлов электролизом в ванне, имеющую катодное пространство с католитом, содержащую жесткий каркас, диафрагменный мешок, нерастворимый анод, приспособление для предотвращения соприкосновения анода с диафрагменным мешком, устройство для вывода анолита и выделяющихся на аноде газообразных веществ за счет разрежения, отличающуюся тем, что устройство для вывода анолита и выделяющихся на аноде газообразных веществ выполнено в виде штуцера с диаметром отверстия 5-12 мм, жестко закрепленного в каркасе анодной ячейки таким образом, чтобы нижний край отверстия штуцера находился на расстоянии от верхнего края ячейки, равном сумме расстояния от верхнего края ячейки до уровня католита в ванне и перепада между уровнями католита в ванне и анолита в ячейке, при этом приспособление для предотвращения соприкосновения анода с диафрагменным мешком выполнено в виде решетки из вертикально расположенных прутов толщиной к=10-15 мм, изготовленных из диэлектрического материала и закрепленных с интервалом, равным 10·к, на двух горизонтальных опорных планках.

Использование в анодной ячейке устройства для вывода анолита и выделяющихся на аноде газообразных веществ при помощи разрежения, выполненного в виде штуцера с диаметром отверстия 5-12 мм, жестко закрепленного в каркасе анодной ячейки с таким расчетом, чтобы нижний край отверстия штуцера находился на расстоянии h от верхнего края анодной ячейки, определяемом по формуле: h=а+b, где а - расстояние от верхнего края ячейки до уровня католита в ванне; b - перепад уровня между католитом и анолитом, позволяет проводить эвакуацию анолита с постоянной заданной скоростью, приводит к повышению стабильности концентрации кислоты в анодном пространстве, а также позволяет минимизировать материалоемкость, обеспечивая при этом оптимальные эксплуатационные характеристики ячейки по сроку службы всех ее элементов, трудозатратам на обслуживание и качеству катодного металла.

Использование приспособления, предотвращающего соприкосновение анода с диафрагменным мешком, выполненного в виде решетки, состоящей из вертикально расположенных прутов толщиной k=10-15 мм, изготовленных из диэлектрического материала и закрепленных с интервалом, равным 10·k, при помощи двух горизонтальных опорных планок, позволяет увеличить срок эксплуатации ячейки, сократив при этом затраты на изготовление и эксплуатацию ячеек.

Уменьшение диаметра штуцера приводит к затруднению эвакуации анолита из ячейки и, как следствие, повышению концентрации серной кислоты в катодном пространстве, что, в свою очередь, приводит к необходимости увеличения расхода католита на осуществление процесса электролиза, ухудшению качества катодного осадка, увеличению выделения гидроаэрозолей никеля и снижению катодного выхода по току.

Увеличение диаметра штуцера приводит к снижению прочности каркаса и, как следствие, к уменьшению срока службы ячейки.

Эвакуация электролита без использования разрежения приводит к резкому повышению концентрации серной кислоты в анолите, следствием чего является повышение концентрации кислоты в катодном пространстве и увеличение выделения гидроаэрозолей никеля в воздух рабочей зоны электролизной ванны.

При создании разрежения над уровнем анолита в ячейке и сохранении атмосферного давления над уровнем католита в ванне уровень анолита в ячейке будет повышаться до определенного уровня. Поскольку анолит будет подниматься вверх, газы, непрерывно выделяющиеся на аноде и находящиеся выше уровня анолита, за счет накопления вверху ячейки обеспечивают его эвакуацию, исключая запирание отверстия штуцера и образование гидравлического затвора.

Нежесткое крепление штуцера приводит к невозможности поддержания заданного перепада между уровнем католита и анолита и повышенному износу диафрагмы, что приводит к повышению концентрации серной кислоты в катодном пространстве, необходимости увеличения расхода католита на осуществление процесса электролиза, ухудшению качества катодного осадка, увеличению выделения гидроаэрозолей никеля и снижению катодного выхода по току, а также к уменьшению срока службы ячейки.

Увеличение расстояния от верхнего края анодной ячейки до нижнего края отверстия штуцера более величины h приводит к повышенному расходу анолита и, как следствие, к увеличению затрат на его регенерацию.

Уменьшение расстояния от верхнего края анодной ячейки до нижнего края отверстия штуцера менее величины h приводит к повышению концентрации серной кислоты в анолите, следствием чего является повышение концентрации кислоты в катодном пространстве и увеличение выделения гидроаэрозолей никеля в воздух рабочей зоны электролизной ванны.

Горизонтальное расположение прутов приспособления, предотвращающего соприкосновение анода с диафрагменным мешком, приводит к повышению расхода анолита и, как следствие, к увеличению затрат на его регенерацию, а также повышенному износу диафрагмы, следствием чего является сокращение срока службы ячейки.

Уменьшение диаметра прутов, из которых изготовлено приспособление, предотвращающее соприкосновение анода с диафрагменным мешком, приводит к увеличению вероятности соприкосновения диафрагмы с анодом и, как следствие, к снижению срока службы анодной ячейки.

Увеличение диаметра прутов, из которых изготовлено приспособление, предотвращающее соприкосновение анода с диафрагменным мешком, приводит к ухудшению качества катодного металла по причине возникновения на катоде волн.

Уменьшение интервала между прутами приспособления, предотвращающего соприкосновение анода с диафрагменным мешком, приводит к ухудшению качества катодного металла по причине возникновения на катоде волн.

Увеличение интервала между прутами приспособления, предотвращающего соприкосновение анода с диафрагменным мешком, приводит к увеличению вероятности соприкосновения диафрагмы с анодом и, как следствие, к снижению срока службы анодной ячейки.

Использование для крепежа прутов более двух горизонтальных опорных планок приводит к затруднению газовыделения и, как следствие, снижению катодного выхода по току.

Изобретение поясняется чертежом.

Анодная ячейка для электровыделения цветных металлов работает следующим образом. Ячейку помещают в электролизную ванну, заполненную никелевым электролитом и оснащенную никелевыми катодами, после чего подают исходный католит со скоростью 0,01-0,05 дм3/A·ч. Перемешивание католита в ванне происходит при его движении сверху вниз за счет разницы удельных весов поступающего и находящегося в ванне электролита. Через ткань диафрагменного мешка 1 католит просачивается в анодное пространство. Уровень анолита 2 в ячейке поддерживается более низким, чем уровень католита 3 в катодном пространстве, методом постоянного выведения через штуцер 6 при помощи разрежения -5 кПа, что исключает прохождение электролита в обратном направлении, предотвращая тем самым поступление в катодное пространство образующейся на аноде серной кислоты. Процесс электролиза никеля ведут при следующих технологических параметрах: плотности тока - 200-300 А/м2, межэлектродном расстоянии 155±5 мм, напряжении - 3,5-4,5 В, температуре электролита - 75-85°С. времени наращивания катода - 4-8 суток.

Пример анодной ячейки.

Анодные ячейки для электровыделения цветных металлов изготавливали в количестве, требующемся для оснащения одной опытной электролизной ванны, 2 шт. Каждая из ячеек включала диафрагменный мешок из технической ткани «Полиэстер» арт. 2255-V5 размером 1400×1100 мм, надетый сверху на каркас, изготовленный из полипропилена (марка 01005 по ТУ 6-05-1105-83), состоявший из двух стоек длиной 1300 мм и основания длиной 950 мм, скрепленных между собой методом сварки по нижним угловым стыкам. В верхней части стойки были скреплены между собой двумя титановыми (титан марки ВТ-1 ГОСТ 19807-74) планками размером 5×20×950 мм при помощи шпилек, изготовленных из титановой проволоки 3 мм сечения. Нерастворимый анод с размером рабочей поверхности 1250×900×10 мм был изготовлен из свинца (марка С01 по ГОСТ 3778-98). Приспособление, предотвращающее соприкосновение анода с диафрагменным мешком, представляло собой ненатянутую сетку толщиной 1,5 мм с размером ячеи 3 мм из полипропилена (ГОСТ 26996-86). Устройство для вывода анолита и выделяющихся на аноде газообразных веществ представляло собой титановый штуцер (титан марки ВТ-1 ГОСТ 19807-74) диаметром 8 мм, герметично закрепленный на диафрагменном мешке при помощи титановой накидной гайки (титан марки ВТ-1 ГОСТ 19807-74) и двух прокладок из кислотостойкой резины (ГОСТ 15180-86) с таким расчетом, чтобы нижний край отверстия штуцера находился на расстоянии h=a, где а - расстояние от верхнего края ячейки до уровня католита в ванне.

Эксплуатацию изготовленных анодных ячеек для электровыделения цветных металлов осуществляли следующим образом: ячейку помещали в электролизную ванну, заполненную никелевым электролитом и оснащенную никелевыми катодами, после чего подавали исходный католит со скоростью 12 дм3/A·ч. Перемешивание католита в ванне происходило при его движении сверху вниз за счет разницы удельных весов поступающего и находящегося в ванне электролита. Через ткань диафрагменного мешка католит просачивался в анодное пространство. Уровень анолита в ячейке поддерживается равным уровню католита в катодном пространстве методом постоянного выведения через штуцер при помощи разрежения - 5 кПа. Процесс электролиза никеля вели при следующих технологических параметрах: плотности тока - 200 А/м2, межэлектродном расстоянии 155±5 мм, напряжении - 4,0 В, температуре электролита - 80°С, времени наращивания катода - 6 суток.

При выходе из строя ячейки по причине повреждения мешка или каркаса ее выгружали из электролизной ванны и после замены поврежденной детали использовали повторно.

В таблице 1, кроме описанного, приведены примеры выполнения анодной ячейки для электровыделения цветных металлов с отличиями в характеристиках устройства для вывода анолита и выделяющихся на аноде газообразных веществ и приспособления, предотвращающего соприкосновение анода с диафрагменным мешком, а также результаты их эксплуатации.

Из таблицы 1 видно, что использование анодной ячейки для электровыделения цветных металлов, оснащенной устройством для вывода анолита и выделяющихся на аноде газообразных веществ при помощи разрежения, выполненным в виде штуцера с диаметром отверстия 5-12 мм, жестко закрепленного в каркасе анодной ячейки с таким расчетом, чтобы нижний край отверстия штуцера находился на расстоянии h от верхнего края анодной ячейки, определяемом по формуле: h=a+b, где а - расстояние от верхнего края ячейки до уровня католита в ванне; b - перепад уровня между католитом и анолитом (пример 2), позволяет при неизменности катодного выхода по току улучшить качество катодного металла и минимизировать эксплуатационные затраты за счет 2-кратного увеличения срока службы ячейки и 1,9-кратного снижения расхода анолита, выводимого на регенерацию, по сравнению с прототипом (Пример 1)

При этом использование приспособления, предотвращающего соприкосновение анода с диафрагменным мешком, выполненного в виде решетки, состоящей из расположенных вертикально прутов толщиной k=10-15 мм, изготовленных из диэлектрического материала и закрепленных с интервалом, равным 10·k, при помощи двух горизонтальных опорных планок (примеры 3-7), позволяет сделать срок эксплуатации ячейки на 6,7% продолжительней, сократив, тем самым, затраты на изготовление и эксплуатацию ячеек.

Уменьшение диаметра штуцера до 4 мм (пример 8) приводит к затруднению эвакуации анолита из ячейки и, как следствие, повышению концентрации серной кислоты в катодном пространстве до 2 г/дм3, что, в свою очередь, приводит к необходимости увеличения расхода католита на осуществление процесса электролиза, ухудшению качества катодного осадка до марки Н-1, 4-кратному увеличению выделения гидроаэрозолей никеля и снижению катодного выхода по току на ~2%.

Увеличение диаметра штуцера (Пример 9) приводит к снижению прочности каркаса и, как следствие, к более чем 30%-ному уменьшению срока службы ячейки.

Эвакуация электролита без использования разрежения (Примеры 10, 11) приводит к 2-кратному повышению концентрации серной кислоты в анолите, следствием чего является пропорциональное повышение концентрации кислоты в катодном пространстве и 30-кратное увеличение выделения гидроаэрозолей никеля в воздух рабочей зоны электролизной ванны.

Уровень анолита в ячейке выше уровня католита в ванне, но за счет непрерывно выделяющихся на аноде газов, находящихся выше уровня анолита и накопившихся вверху ячейки, эвакуация анолита и газов происходит беспрепятственно.

Нежесткое крепление штуцера (Пример 12) приводит к невозможности поддержания заданного перепада между уровнем католита и анолита и повышенному износу диафрагмы, что, во-первых, приводит к повышению концентрации серной кислоты в катодном пространстве до 2,2 г/дм3, что делает необходимым увеличение расхода католита на осуществление процесса электролиза, ухудшению качества катодного осадка, 3-кратному увеличению выделения гидроаэрозолей никеля, и 3%-ному снижению катодного выхода по току, а во-вторых, к уменьшению срока службы ячейки на 17%.

Увеличение расстояния от верхнего края анодной ячейки до нижнего края отверстия штуцера более величины h на 1 см (Пример 13) приводит к 2-кратному повышению расхода анолита и, как следствие, к увеличению затрат на его регенерацию.

Уменьшение расстояния от верхнего края анодной ячейки до нижнего края отверстия штуцера менее величины h на 1 см (Пример 14) приводит к 20%-ному повышению концентрации серной кислоты в анолите, следствием чего является повышение концентрации кислоты в катодном пространстве до 3 г/дм3, снижение катодного выхода по току более чем на 5% и ~2-кратное увеличение выделения гидроаэрозолей никеля в воздух рабочей зоны электролизной ванны и ухудшение качества катодного металла.

Горизонтальное расположение прутков приспособления, предотвращающего соприкосновение анода с диафрагменным мешком (Пример 15), приводит к 2-кратному повышению расхода анолита и, как следствие, к увеличению затрат на его регенерацию, а также повышенному износу диафрагмы, следствием чего является 30%-ное сокращение срока службы ячейки.

Уменьшение диаметра прутка, из которого изготовлено приспособление, предотвращающее соприкосновение анода с диафрагменным мешком, менее 10 мм (Пример 16) приводит к увеличению вероятности соприкосновения диафрагмы с анодом и, как следствие, к снижению срока службы анодной ячейки на ~30%.

Увеличение диаметра прутка более 15 мм (Пример 17), из которого изготовлено приспособление, предотвращающее соприкосновение анода с диафрагменным мешком, приводит к ухудшению качества катодного металла до марки Н-2 по причине возникновения на катоде волн.

Уменьшение интервала между прутами приспособления, предотвращающего соприкосновение анода с диафрагменным мешком, менее 10·k (Пример 18) приводит к ухудшению качества катодного металла до марки Н-2 по причине возникновения на катоде волн.

Увеличение интервала между прутами приспособления, предотвращающего соприкосновение анода с диафрагменным мешком, более 10·k (Пример 19) приводит к увеличению вероятности соприкосновения диафрагмы с анодом и, как следствие, к снижению срока службы анодной ячейки на ~20%.

Использование для крепежа прутов более двух горизонтальных опорных планок (Пример 20) приводит к затруднению газовыделения и, как следствие, снижению катодного выхода по току на ~5%.

Из представленных в таблице результатов проведенных опытов следует, что использование предложенной конструкции анодной ячейки для электровыделения металлов обеспечивает снижение выделения гидроаэрозолей никеля в воздух рабочей зоны электролизной ванны, повышение качества катодного металла за счет увеличения катодного выхода, сокращение эксплуатационных затрат за счет 2-кратного увеличения срока службы ячейки и 1,9-кратного снижения расхода анолита, выводимого на регенерацию.

Похожие патенты RU2353712C2

название год авторы номер документа
СПОСОБ ИЗГОТОВЛЕНИЯ ДИАФРАГМЕННОГО ЭЛЕМЕНТА ЯЧЕЙКИ ДЛЯ ЭЛЕКТРОЛИТИЧЕСКОГО ИЗВЛЕЧЕНИЯ МЕТАЛЛОВ ИЗ ВОДНЫХ РАСТВОРОВ И ДИАФРАГМЕННЫЙ ЭЛЕМЕНТ 2003
  • Ершов С.Ф.
  • Рябушкин И.А.
  • Юрьев А.И.
  • Солонин А.В.
  • Волков С.В.
  • Погребенко Д.М.
  • Котухов С.Б.
  • Глухов И.Ф.
  • Кожухов В.В.
  • Литвиненко Э.С.
  • Османова С.Р.
  • Серво Матти
RU2256729C1
ЭЛЕКТРОХИМИЧЕСКИЙ СПОСОБ И УСТРОЙСТВО НЕПРЕРЫВНОГО ДЕЙСТВИЯ ДЛЯ ОЧИСТКИ ВОДЫ 2005
  • Ханин Алексей Борисович
  • Будыкина Татьяна Алексеевна
RU2305071C2
УСТАНОВКА ДЛЯ ПОЛУЧЕНИЯ ВОДНОГО РАСТВОРА ОКСИДАНТОВ 2006
  • Бахир Витольд Михайлович
  • Задорожний Юрий Георгиевич
  • Паничев Вадим Геннадьевич
RU2322397C1
СПОСОБ ПОЛУЧЕНИЯ ХЛОРА И ХЛОРСОДЕРЖАЩИХ ОКИСЛИТЕЛЕЙ И УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2005
  • Рябцев Александр Дмитриевич
  • Немков Николай Михайлович
  • Титаренко Валерий Иванович
  • Мамылова Елена Викторовна
  • Низковских Вячеслав Михайлович
  • Низковских Евгений Вячеславович
  • Постников Павел Михайлович
  • Шумаков Геннадий Николаевич
RU2315132C2
СПОСОБ ПОЛУЧЕНИЯ КАТОДНОГО НИКЕЛЯ 1999
  • Хагажеев Д.Т.
  • Мироевский Г.П.
  • Попов И.О.
  • Онищин Б.П.
  • Розенберг Ж.И.
  • Рябко А.Г.
RU2141010C1
УСТАНОВКА ДЛЯ ПОЛУЧЕНИЯ ПРОДУКТОВ АНОДНОГО ОКСИЛЕНИЯ РАСТВОРА ХЛОРИДОВ ЩЕЛОЧНЫХ ИЛИ ЩЕЛОЧНО-ЗЕМЕЛЬНЫХ МЕТАЛЛОВ 1996
  • Бахир Витольд Михайлович
  • Задорожний Юрий Георгиевич
RU2088693C1
СПОСОБ ПОЛУЧЕНИЯ ГИДРОКСИДОВ И/ИЛИ ГИДРОКСООКСИДОВ МЕТАЛЛОВ ПУТЕМ ДИАФРАГМЕННОГО АНАЛИЗА 1995
  • Дирк Науманн
  • Армин Ольбрих
  • Йозеф Шмолл
  • Вильфрид Гуткнехт
  • Бернд Бауер
  • Томас Менцель
RU2153538C2
СПОСОБ ПОЛУЧЕНИЯ ДИНИТРИЛОВ 1972
  • Иностранцы Еми Акира, Огава Синзаку, Есида Мунео Сакаи Такамаса
  • Иностранна Фирма Асахи Касеи Когио Кабусики Кайша
SU342341A1
СПОСОБ ПЕРЕРАБОТКИ МЕДНО-НИКЕЛЕВЫХ СУЛЬФИДНЫХ МАТЕРИАЛОВ 2001
RU2175995C1
ЭЛЕКТРОДНЫЙ КОМПЛЕКТ 2001
  • Гончаренко Е.П.
  • Гончаренко Т.Е.
RU2206640C2

Реферат патента 2009 года АНОДНАЯ ЯЧЕЙКА ДЛЯ ЭЛЕКТРОВЫДЕЛЕНИЯ ЦВЕТНЫХ МЕТАЛЛОВ

Изобретение относится к конструкциям диафрагменных ячеек для электролитического извлечения никеля из водных растворов, в частности к анодной ячейке. Анодная ячейка для электровыделения цветных металлов электролизом в ванне, имеющей катодное пространство с католитом, содержит жесткий каркас, диафрагменный мешок, нерастворимый анод, приспособление для предотвращения соприкосновения анода с диафрагменным мешком, устройство для вывода анолита и выделяющихся на аноде газообразных веществ за счет разрежения, выполненное в виде штуцера с диаметром отверстия 5-12 мм, жестко закрепленного в каркасе анодной ячейки с таким расчетом, чтобы нижний край отверстия штуцера находился на расстоянии h от верхнего края ячейки, определяемом по формуле: h=a+b, где а - расстояние от верхнего края ячейки до уровня католита в ванне; b - перепад уровня между католитом и анолитом. Приспособление, предотвращающее соприкосновение анода с диафрагменным мешком, выполнено в виде решетки из вертикально расположенных прутов толщиной k=10-15 мм, изготовленных из диэлектрического материала и закрепленных на двух горизонтальных опорных планках с интервалом, равным 10·k. Обеспечивается исключение соприкосновения анода с диафрагменным мешком и заданный перепад уровней католита и анолита. 1 ил., 1 табл.

Формула изобретения RU 2 353 712 C2

Анодная ячейка для электровыделения цветных металлов электролизом в ванне, имеющей катодное пространство с католитом, содержащая жесткий каркас, диафрагменный мешок, нерастворимый анод, приспособление для предотвращения соприкосновения анода с диафрагменным мешком, устройство для вывода анолита и выделяющихся на аноде газообразных веществ за счет разрежения, отличающаяся тем, что устройство для вывода анолита и выделяющихся на аноде газообразных веществ выполнено в виде штуцера с диаметром отверстия 5-12 мм, жестко закрепленного в каркасе анодной ячейки таким образом, чтобы нижний край отверстия штуцера находился на расстоянии от верхнего края ячейки, равном сумме расстояния от верхнего края ячейки до уровня католита в ванне и перепада между уровнями католита в ванне и анолита в ячейке, при этом приспособление для предотвращения соприкосновения анода с диафрагменным мешком выполнено в виде решетки из вертикально расположенных прутов толщиной k=10-15 мм, изготовленных из диэлектрического материала и закрепленных с интервалом, равным 10·k, на двух горизонтальных опорных планках.

Документы, цитированные в отчете о поиске Патент 2009 года RU2353712C2

US 4201653, 06.05.1980
ЭЛЕКТРОДНЫЙ КОМПЛЕКТ 2001
  • Гончаренко Е.П.
  • Гончаренко Т.Е.
RU2206640C2
СПОСОБ ВЫЩЕЛАЧИВАНИЯ ПОЛИМЕТАЛЛИЧЕСКОГО СЫРЬЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2003
  • Космухамбетов Александр Равильевич
RU2245378C1
КАТОДНАЯ ЯЧЕЙКА ЭЛЕКТРОЛИЗЕРА ДЛЯ ЭЛЕКТРОЛИТИЧЕСКОГО РАФИНИРОВАНИЯ НИКЕЛЯ 1999
  • Хагажеев Д.Т.
  • Мироевский Г.П.
  • Онищин Б.П.
  • Попов И.О.
  • Сиротина Н.Г.
  • Алексеев К.Ю.
  • Южаков В.П.
RU2152460C1
Аппарат для электролитического получения металла 1989
  • Геллерштейн Михаил Маркович
  • Воробьев Глеб Алексеевич
SU1730204A1
Электролизер для получения металлов электролизом водных растворов их солей 1977
  • Волков Л.В.
  • Чернов В.А.
  • Рагинский Л.С.
  • Кушнерев В.Н.
  • Павлинов А.П.
  • Андрущенко В.Н.
  • Крылов А.С.
  • Сахаров В.И.
  • Читоянц Г.А.
  • Скороходов В.И.
SU736685A1
US 6391170 B1, 21.05.2002.

RU 2 353 712 C2

Авторы

Юрьев Александр Иванович

Сущев Александр Васильевич

Котухов Сергей Борисович

Солонин Александр Владимирович

Грейвер Михаил Борисович

Литвиненко Эмма Сергеевна

Османова Сусанна Ресульевна

Шульга Елена Валентиновна

Даты

2009-04-27Публикация

2006-09-29Подача