ОПТИЧЕСКИЙ ПРИЦЕЛ СИСТЕМЫ НАВЕДЕНИЯ УПРАВЛЯЕМОГО СНАРЯДА Российский патент 2005 года по МПК F41G7/26 

Описание патента на изобретение RU2257524C1

Изобретение относится к оптическим системам наведения управляемых снарядов и может быть использовано в системах управляемого оружия с телеориентацией в луче лазера.

Известен оптический прицел системы наведения управляемого снаряда, патент РФ №2150073, МПК 7 F 41 G 7/26, содержащий установленные соосно визир и прожектор, включающий в себя два инжекционных лазера, излучающие области которых расположены перпендикулярно осям измеряемых координат, систему вывода излучения лазеров на единую оптическую ось, последовательно установленные на этой оси оптический сканер в виде вращающейся призмы и панкратический объектив, при этом ось вращения призмы совмещена с оптической осью объектива, а также непрозрачную шторку, установленную на оправу вращающейся призмы, два оптронных датчика, установленных неподвижно параллельно одной из измеряемых координат, причем в плоскости, перпендикулярной оптической оси прожектора, угол между линиями, соединяющими каждый из датчиков с осью вращения призмы, составляет 90°, при этом выходы первого и второго оптронных датчиков подключены соответственно ко входам первой и второй схем задержки, выходы которых подключены соответственно к первому и второму входам формирователя импульсов, первый и второй выходы которого соединены соответственно с входами первого и второго лазеров.

Существенным недостатком данного оптического прицела является недостаточная надежность его работы во всех температурных условиях его применения. Это связано с тем, что мощность инжекционных лазерных диодов сильно зависит от температурных условий их работы. Так, при необходимости работы прицела в диапазоне температур от плюс 60°С до минус 50°С мощность лазеров возрастает более чем на 20%. Поэтому прицел при минусовых температурах окружающей среды работает на границе допусков работы лазеров, что существенно снижает надежность работы прицела из-за повышенной вероятности выхода из строя лазеров (прогарание зеркал лазерных диодов).

Задачей предлагаемого изобретения является повышение надежности работы оптического прицела во всем диапазоне рабочих температур за счет изменения напряжения накачки лазеров в зависимости от температуры окружающей среды (стабилизации мощности излучения во всем температурном диапазоне работы прицела).

Поставленная цель достигается тем, что в оптический прицел системы наведения управляемого снаряда, содержащий установленные соосно визир и прожектор, включающий в себя два инжекционных лазера, излучающие области которых расположены перпендикулярно осям измеряемых координат, систему вывода излучения лазеров на единую оптическую ось, последовательно установленные на этой оси оптический сканер в виде вращающейся призмы и панкратический объектив, при этом ось вращения призмы совмещена с оптической осью объектива, а также непрозрачную шторку, установленную на оправу вращающейся призмы, два оптронных датчика, установленных неподвижно параллельно одной из измеряемых координат, причем в плоскости, перпендикулярной оптической оси прожектора, угол между линиями, соединяющими каждый из датчиков с осью вращения призмы, составляет 90°, при этом выходы первого и второго оптронных датчиков подключены соответственно ко входам первой и второй схем задержки, выходы которых подключены соответственно к первому и второму входам формирователя импульсов, введены датчик температуры, первый и второй управляемые источники напряжения, первый и второй коммутаторы напряжения, причем первые управляющие входы первого и второго коммутаторов напряжения соединены соответственно с первым и вторым выходами формирователя импульсов, а вторые входы - соответственно с выходами первого и второго управляемых источников напряжения, входы управления которых соединены с выходом датчика температуры, а выходы первого и второго коммутаторов напряжения соединены соответственно с входами первого и второго лазеров.

Введение датчика температуры, первого и второго управляемых источников напряжения и первого и второго коммутаторов напряжения с соответствующими связями позволяет поддерживать мощность излучения лазеров на заданном уровне независимо от температурных условий работы прицела и т.о. обеспечивается работа прибора на заданных дальностях.

На фиг.1 приведена структурная схема оптического прицела системы наведения.

На фиг.2 приведена типовая зависимость мощности излучения инжекционного полупроводникового лазера от температуры окружающей среды.

На фиг.3а и фиг.3б приведены варианты выполнения управляемого источника напряжения и коммутатора напряжения соответственно.

Оптический прицел системы наведения содержит визир 1, прожектор 2, включающий в себя два инжекционных лазера 3 и 4, систему вывода излучения лазеров на единую оптическую ось 5, оптический сканер 6, призму 7, панкратический объектив 8, непрозрачную шторку 9, два оптронных датчика 10 и 11, первую и вторую схемы задержек 12 и 13, формирователь импульсов 14, первый 18 и второй 19 коммутаторы напряжения, первый 16 и второй 17 управляемые источники напряжения и датчик температуры 15.

Первый 16 и второй 17 управляемые источники напряжения могут быть выполнены, например, как приведено на фиг.3а, первый 18 и второй 19 коммутаторы напряжения могут быть выполнены, например, как приведено на фиг.3б. Остальные узлы, как в прототипе.

Работает прицел следующим образом.

На выходе датчика температуры 15 вырабатывается сигнал, пропорциональный температуре окружающей среды, который поступает на входы управления первого и второго управляемых источников напряжения 16 и 17, и на их выходах устанавливаются напряжения, которые обеспечивают заданную на данной температуре накачку лазерных диодов. Эти напряжения поступают на вторые входы первого 18 и второго 19 коммутаторов напряжения соответственно.

Вращающаяся призма 7 совершает нутационное сканирование плоскими лучами лазеров 3 и 4 по формируемому полю, радиус которого на дальности управляемого объекта поддерживается постоянным за счет изменения фокусного расстояния панкратического объектива 8. При этом в ходе вращения призмы шторка 9 производит последовательное прерывание в оптронных датчиках 10 и 11, комбинация сигналов на выходах которых определяет направление сканирования каждого плоского луча по формируемому полю. Данные сигналы поступают после прохождения схем задержек 12 и 13 соответственно на первые и вторые входы формирователя импульсов 14. На выходе формирователя импульсов 14, в зависимости от состояния датчиков 10 и 11 и времени сканирования, формируются парные импульсы, причем временной интервал между импульсами в паре соответствует текущему каналу сканирования, а частота повторения посылок линейно меняется во времени. Эти парные импульсы с первого и второго выходов формирователя импульсов 14 поступают на первые (управляющие) входы первого 18 и второго 19 коммутаторов напряжения, на вторые входы которых приходят напряжения с выходов первого 18 и второго 19 управляемых источников напряжения соответственно. Импульсы напряжения, величина которого определяется напряжением с выхода управляемого источника напряжения, а длительность и закон следования сигналами с выхода формирователя импульсов 14, поступают соответственно на входы первого 3 и второго 4 лазерных диодов, обеспечивая тем самым необходимую мощность их излучения.

При изменении температуры окружающей среды изменяется сигнал с выхода датчика температуры 15, напряжение на выходе первого и второго источников напряжения 16 и 17 и амплитуда импульсов напряжения, поступающих на входы первого и второго лазеров, мощность излучения которых остается в заданных пределах (не изменяется, не увеличивается, как в прототипе, с уменьшением температуры окружающей среды), а это приводит к облегченному режиму работы лазеров на минусовых температурах окружающей среды (по сравнению с прототипом).

Т.о. за счет стабилизации мощности излучения лазеров во всем диапазоне рабочих температур удалось повысить надежность работы прицела во всем диапазоне рабочих температур.

Похожие патенты RU2257524C1

название год авторы номер документа
СПОСОБ ФОРМИРОВАНИЯ ОПТИЧЕСКОГО ПОЛЯ ДЛЯ ТЕЛЕОРИЕНТИРОВАНИЯ УПРАВЛЯЕМЫХ ОБЪЕКТОВ И ОПТИЧЕСКИЙ ПРИЦЕЛ ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2002
  • Дудка В.Д.
  • Степаничев И.В.
  • Погорельский С.Л.
  • Матвеев Э.Л.
  • Коечкин Н.Н.
RU2228505C2
СПОСОБ ФОРМИРОВАНИЯ ОПТИЧЕСКОГО ПОЛЯ ДЛЯ ТЕЛЕОРИЕНТИРОВАНИЯ УПРАВЛЯЕМЫХ ОБЪЕКТОВ, ОПТИЧЕСКИЙ ПРИЦЕЛ СИСТЕМЫ НАВЕДЕНИЯ УПРАВЛЯЕМОГО СНАРЯДА И ФОРМИРОВАТЕЛЬ ИМПУЛЬСОВ 2006
  • Погорельский Семен Львович
  • Степаничев Игорь Вениаминович
  • Боев Игорь Викторович
  • Матвеев Эдуард Львович
  • Коечкин Николай Николаевич
  • Долгов Вячеслав Васильевич
  • Смирнов Леонид Владимирович
  • Каденкин Сергей Иванович
  • Черносвитов Игорь Викторович
RU2313055C1
Оптический прицел системы наведения управляемого снаряда (варианты) 2016
  • Погорельский Семен Львович
  • Матвеев Эдуард Львович
  • Долгов Вячеслав Васильевич
  • Коечкин Николай Николаевич
  • Каденкин Сергей Иванович
RU2623687C1
ОПТИЧЕСКИЙ ПРИЦЕЛ СИСТЕМЫ НАВЕДЕНИЯ УПРАВЛЯЕМОГО СНАРЯДА 1999
  • Шипунов А.Г.
  • Погорельский С.Л.
  • Матвеев Э.Л.
  • Коечкин Н.Н.
  • Куликов В.Б.
  • Телышев В.А.
RU2150073C1
ОПТИЧЕСКИЙ ПРИЦЕЛ СИСТЕМЫ НАВЕДЕНИЯ УПРАВЛЯЕМОГО СНАРЯДА 2002
  • Погорельский С.Л.
  • Степаничев И.В.
  • Матвеев Э.Л.
  • Коечкин Н.Н.
  • Долгов В.В.
  • Телышев В.А.
RU2234661C1
ОПТИЧЕСКИЙ ПРИЦЕЛ СИСТЕМЫ НАВЕДЕНИЯ УПРАВЛЯЕМОГО СНАРЯДА 2004
  • Дудка Вячеслав Дмитриевич
  • Погорельский Семен Львович
  • Матвеев Эдуард Львович
  • Коечкин Николай Николаевич
  • Долгов Вячеслав Васильевич
RU2280224C1
ОПТИЧЕСКИЙ ПРИЦЕЛ СИСТЕМЫ НАВЕДЕНИЯ УПРАВЛЯЕМОГО СНАРЯДА 2003
  • Погорельский С.Л.
  • Степаничев И.В.
  • Матвеев Э.Л.
  • Коечкин Н.Н.
RU2260764C2
ОПТИЧЕСКИЙ ПРИЦЕЛ СИСТЕМЫ НАВЕДЕНИЯ УПРАВЛЯЕМОГО СНАРЯДА 2003
  • Погорельский С.Л.
  • Дудка В.Д.
  • Матвеев Э.Л.
  • Коечкин Н.Н.
RU2260763C2
Устройство формирования оптического поля для телеориентирования управляемых объектов 2019
  • Тикменов Василий Николаевич
  • Купцов Сергей Владимирович
  • Епишин Юрий Владимирович
  • Кучинский Сергей Александрович
RU2704675C1
УСТРОЙСТВО ДЛЯ ФОРМИРОВАНИЯ ОПТИЧЕСКОГО ПОЛЯ ДЛЯ ТЕЛЕОРИЕНТИРОВАНИЯ УПРАВЛЯЕМЫХ ОБЪЕКТОВ 2006
  • Погорельский Семен Львович
  • Степаничев Игорь Вениаминович
  • Савченко Дмитрий Игнатьевич
  • Андреева Светлана Владимировна
  • Ковалев Николай Васильевич
  • Телышев Виктор Александрович
RU2326324C1

Иллюстрации к изобретению RU 2 257 524 C1

Реферат патента 2005 года ОПТИЧЕСКИЙ ПРИЦЕЛ СИСТЕМЫ НАВЕДЕНИЯ УПРАВЛЯЕМОГО СНАРЯДА

Изобретение относится к оптическим системам наведения управляемых снарядов и может быть использовано в системах управляемого оружия с телеориентацией в луче лазера. Технический результат - повышение надежности работы прицела за счет стабилизации мощности лазеров во всем диапазоне рабочих температур. Оптический прицел системы наведения управляемого снаряда содержит установленные соосно визир и прожектор, включающий в себя два инжекционных лазера, излучающие области которых расположены перпендикулярно осям измеряемых координат, систему вывода излучения лазеров на единую оптическую ось, последовательно установленные на этой оси оптический сканер в виде вращающейся призмы и панкратический объектив, при этом ось вращения призмы совмещена с оптической осью объектива, а также непрозрачную шторку, установленную на оправу вращающейся призмы, два оптронных датчика, установленных неподвижно параллельно одной из измеряемых координат. Причем в плоскости, перпендикулярной оптической оси прожектора, угол между линиями, соединяющими каждый из датчиков с осью вращения призмы, составляет 90°, при этом выходы первого и второго оптронных датчиков подключены соответственно ко входам первой и второй схем задержки, выходы которых подключены соответственно к первому и второму входам формирователя импульсов. Введены датчик температуры, первый и второй управляемые источники напряжения, первый и второй коммутаторы напряжения, причем первые управляющие входы первого и второго коммутаторов напряжения соединены соответственно с первым и вторым выходами формирователя импульсов, а вторые входы - соответственно с выходами первого и второго управляемых источников напряжения, входы управления которых соединены с выходом датчика температуры, а выходы первого и второго коммутаторов напряжения соединены соответственно с входами первого и второго лазеров. 4 ил.

Формула изобретения RU 2 257 524 C1

Оптический прицел системы наведения управляемого снаряда, содержащий установленные соосно визир и прожектор, включающий в себя два инжекционных лазера, излучающие области которых расположены перпендикулярно осям измеряемых координат, систему вывода излучения лазеров на единую оптическую ось, последовательно установленные на этой оси оптический сканер в виде вращающейся призмы и панкратический объектив, при этом ось вращения призмы совмещена с оптической осью объектива, а также непрозрачную шторку, установленную на оправу вращающейся призмы, два оптронных датчика, установленных неподвижно параллельно одной из измеряемых координат, причем в плоскости, перпендикулярной оптической оси прожектора, угол между линиями, соединяющими каждый из датчиков с осью вращения призмы, составляет 90°, при этом выходы первого и второго оптронных датчиков подключены соответственно ко входам первой и второй схем задержки, выходы которых подключены соответственно к первому и второму входам формирователя импульсов, отличающийся тем, что в него введены датчик температуры, первый и второй управляемые источники напряжения, первый и второй коммутаторы напряжения, причем первые управляющие входы первого и второго коммутаторов напряжения соединены соответственно с первым и вторым выходами формирователя импульсов, а вторые входы - соответственно с выходами первого и второго управляемых источников напряжения, входы управления которых соединены с выходом датчика температуры, а выходы первого и второго коммутаторов напряжения соединены соответственно с входами первого и второго лазеров.

Документы, цитированные в отчете о поиске Патент 2005 года RU2257524C1

ОПТИЧЕСКИЙ ПРИЦЕЛ СИСТЕМЫ НАВЕДЕНИЯ УПРАВЛЯЕМОГО СНАРЯДА 1999
  • Шипунов А.Г.
  • Погорельский С.Л.
  • Матвеев Э.Л.
  • Коечкин Н.Н.
  • Куликов В.Б.
  • Телышев В.А.
RU2150073C1
US 4111385 A, 05.09.1978
СПОСОБ ФОРМИРОВАНИЯ ОПТИЧЕСКОГО ПОЛЯ ДЛЯ ТЕЛЕОРИЕНТИРОВАНИЯ УПРАВЛЯЕМЫХ ОБЪЕКТОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1996
  • Андриевский Л.Г.
  • Исаев В.В.
  • Модеев А.Ф.
  • Рубинштейн М.М.
  • Соболь В.А.
RU2100745C1
СПОСОБ ФОРМИРОВАНИЯ СИГНАЛА МОДУЛЯЦИИ ИЗЛУЧЕНИЯ ОРТОГОНАЛЬНЫХ СКАНИРУЮЩИХ ЛУЧЕЙ В СИСТЕМАХ ТЕЛЕОРИЕНТИРОВАНИЯ УПРАВЛЯЕМЫХ ОБЪЕКТОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1997
  • Андриевский Л.Г.
  • Коротаев С.А.
  • Коротин В.А.
  • Михайловская М.Л.
  • Модеев А.Ф.
  • Рослик А.П.
  • Рубинштейн М.М.
RU2109246C1
СПОСОБ ОБРАБОТКИ ПРИЗАБОЙНОЙ ЗОНЫ СКВАЖИНЫ 1998
  • Просвирин А.А.
  • Беляев Ю.А.
  • Панарин А.Т.
RU2135761C1

RU 2 257 524 C1

Авторы

Шипунов А.Г.

Погорельский С.Л.

Коечкин Н.Н.

Долгов В.В.

Панфилов Ю.А.

Даты

2005-07-27Публикация

2004-04-19Подача