.Изобретение относится к способу алюминотермического получения феррониобия, включающему стадийные загрузку и плавление шихты, содержащей ниобиевый концентрат, железную руду, натриевую селитру, алюминий и слив расплава продуктов плавки.
Сущность изобретения:
1. На первой стадии загружают шихту со скоростью 300-380 кг/м2·мин, содержащую всю массу товарного ниобиевого концентрата и натриевой селитры, 30-70% железной руды от массы плавки, 20-80% извести от массы плавки, и алюминий в количестве 0,85-0,99 от стехиометрически необходимого на восстановление элементов сплава феррониобия.
На второй стадии загружают шихту в количестве 35-55% от массы пятиокиси ниобия в товарном ниобиевом концентрате первой стадии со скоростью 210-270 кг/м2·мин, 30-70% железной руды от массы плавки, 20-80% извести от массы плавки и алюминия в количестве 1,6-2,0 от стехиометрически необходимого на восстановление элементов сплава феррониобия, и перед сливом осуществляют выдержку расплава 0,1-0,6 времени плавления шихты.
2. При использовании в составе шихты, товарного ниобиевого концентрата с попутным ниобиевым концентратом с содержанием пятиокиси ниобия 30-32% плавку ведут в три стадии.
На первой стадии загружают шихту со скоростью 210-280 кг/м2·мин, содержащую всю массу попутного ниобиевого концентрата, 10-30% натриевой селитры от массы плавки, 20-80% извести от массы плавки и алюминий 0,8-0,92 от стехиометрически необходимого на восстановление элементов сплава феррониобия.
На второй стадии загружают шихту со скоростью 300-380 кг/м2·мин, содержащую всю массу товарного ниобиевого концентрата, 70-90% натриевой селитры от массы плавки, и алюминий в количестве 0,85-0,99 от стехиометрически необходимого на восстановление элементов сплава феррониобия.
На третьей стадии загружают шихту со скоростью 230-240 кг/м2·мин, содержащую 30-70% железной руды от массы плавки, 20-80% извести от массы плавки и алюминий в количестве 1,6-2,0 от стехиометрически необходимого на восстановление элементов сплава феррониобия и перед сливом осуществляют выдержку расплава 0,1-0,6 времени плавления шихты.
Изобретение относится к металлургии, конкретно к способу алюминотермического получения феррониобия.
Известен способ алюминотермического получения низкокремнистого феррониобия из технической пятиокиси ниобия, заключающийся в стадийной загрузке и плавлении компонентов шихты.
На первой стадии загружают шихту состава: железная руда 560 кг, известь 170 кг и алюминий 140 кг, что составляет 0,75 от стехиометрически необходимого на восстановление элементов сплава феррониобия.
На второй стадии загружают шихту состава: пятиокись ниобия 1200 кг и алюминий 475 кг, что составляет 1,12 от стехиометрически необходимого на восстановление элементов сплава феррониобия.
На третьей стадии загружалась шихта состава: железная руда 205 кг, известь 170 кг и алюминий 73 кг, что составляет 1,01 от стехиометрически необходимого на восстановление элементов сплава феррониобия.
Недостаток способа: при использовании на плавке пятиокиси ниобия извлечение ниобия в металл составляет не более 92-93,5%. Это связано с тем, что на второй стадии алюминотермические реакции восстановления ниобия протекают при отсутствии оксидов железа в шихте с образованием тугоплавкого сплава и ухудшением условий протекания реакций восстановления. На третьей стадии проплавлялась шихта с низкой удельной теплотой процесса (16 ккал / г-·атом) и недостатком алюминия на довосстановление остаточных оксидов ниобия в шлаковом расплаве.
Наиболее близким техническим решением к изобретению является способ алюминотермического получения феррониобия из товарных ниобиевых концентратов (прототип), включающий стадийные загрузку и плавление шихты и слив расплава продуктов плавки.
На первой стадии загружают шихту со скоростью загрузки 430 кг/м2 мин, состоящую из компонентов от общей массы на плавку: железная руда 51%, известь 67% и алюминий в количестве 1,0 от стехиометрически необходимого на восстановление элементов сплава феррониобия.
На второй стадии загружают шихту со скоростью 130 кг/м2 мин, содержащую всю массу товарного ниобиевого концентрата и натриевой селитры и алюминий в количестве 1,0 от стехиометрически необходимого на восстановление элементов сплава феррониобия.
На третьей стадии загружают остальную часть железной руды, извести и алюминий в количестве 1,59 от стехиометрически необходимого на восстановление элементов сплава феррониобия со скоростью загрузки шихты 400 кг/м2 мин.
Недостаток способа: низкое извлечение ниобия в металл 85-85,5% и повышенный износ магнезитовой футеровки плавильного горна. Это связано с тем, что на второй стадии проплавлялась ниобийсодержащая шихта низкой термичности с малой скоростью загрузки и повышенными тепловыми потерями с получением тугоплавкого ниобиевого сплава, что снижает тепловые условия восстановительных процессов плавки.
Плавление шихты на первой и третьей стадиях плавки с высокой термичностью, сопровождающейся выбросами, и медленное плавление шихты на второй стадии увеличивают улет и угар компонентов шихты. Плавление с высокой термичностью шихты на первой стадии плавки ведет к перегреву получаемого сплава, разрушающего футеровку горна.
Технический результат данного изобретения - повышение извлечения ниобия в металл и повышение качества сплава. Технический результат достигается по предложенному способу алюминотермического получения феррониобия, включающему стадийные загрузку и плавление шихты, содержащей ниобиевый концентрат, натриевую селитру, известь, железную руду, алюминий и слив расплава продуктов плавки:
1. В качестве ниобиевого концентрата используют товарный ниобиевый концентрат. На первой стадии загружают шихту со скоростью 300-380 кг/м2 мин, содержащей всю массу товарного ниобиевого концентрата и натриевой селитры, 30-70% железной руды от массы плавки, 20-80% извести от массы плавки и алюминий в количестве 0,85-0,99 от стехиометрически необходимого на восстановление элементов сплава феррониобия.
На второй стадии загружают шихту в количестве 35-55% от массы пятиокиси ниобия в товарном ниобиевом концентрате в первой стадии со скоростью 210-270 кг/м2 мин, 30-70% железной руды от массы плавки, 20-80% извести от массы плавки и алюминий в количестве 1,6-2,0 от стехиомерически необходимого на восстановление элементов сплава феррониобия, и перед сливом осуществляют выдержку расплава 0,1-0,6 времени плавления шихты.
2. При использовании в составе шихты товарного ниобиевого концентрата с попутным ниобиевым концентратом плавку ведут в три стадии:
На первой стадии загружают шихту со скоростью 210-280 кг/м2 мин, содержащую всю массу попутного ниобиевого концентрата, 10-30% натриевой селитры от массы плавки, 20-80% извести от массы плавки и алюминий 0,8-0,92 от стехиометрически необходимого на восстановление элементов сплава феррониобия.
На второй стадии загружают шихту со скоростью 300-380 кг/м2 мин, содержащую всю массу товарного ниобиевого концентрата, 70-90% натриевой селитры от массы плавки, 30-70% железной руды от массы плавки и алюминий в количестве 0,85-0,99 от стехиометрически необходимого на восстановление элементов сплав феррониобия.
На третьей стадии загружают шихту со скоростью 230-240 кг/м2 мин, содержащую 30-70% железной руды от массы плавки, 20-80% от массы плавки и алюминий в количестве 1,6-2,0 от стехиометрически необходимого на восстановление элементов сплава феррониобия, и перед сливом осуществляют выдержку расплава 0,1-0,6 времени плавления шихты.
Пример 1 (прототип)
Выплавка феррониобия внепечным алюминотермическим способом проводилась в промышленных условиях.
В плавильный горн производились стадийная загрузка и плавление шихты с последующим сливом расплава продуктов плавки.
На первой стадии загружалась и проплавлялась шихта состава: железная руда 185 кг, известь 20 кг и алюминий 60 кг со скоростью загрузки шихты 450 кг/м2 мин.
На второй стадии загружалась и проплавлялась шихта состава: товарный ниобиевый концентрат 1000 кг, натриевая селитра 115 кг и алюминий 305 кг со скоростью загрузки шихты 120 кг/м2 мин.
На третьей стадии загружалась и проплавлялась шихта состава железная руда 180 кг, известь 10 кг и алюминий 100 кг со скоростью загрузки шихты 400 кг/м2 мин.
Плавление шихты на первой и третьей стадиях протекало бурно с выбросами расплава, на второй стадии плавление ниобийсодержащей шихты протекало медленно. Извлечение ниобия на плавке составило 85,15%.
Предлагаемый способ алюминотермического получения феррониобия опробован в промышленных условиях по изложенной технологии. Результаты плавок известного способа (пример 1) и предлагаемого (примеры 2-9) приведены в таблице 1.
Пример 2
В плавильный горн производились стадийная загрузка и плавление шихты с последующим сливом расплава продуктов плавки.
На первой стадии загружалась и проплавлялась шихта состава: товарный ниобиевый концентрат 1000 кг, железная руда 210 кг, натриевая селитра 120 кг и алюминий 345 кг со скоростью загрузки шихты 320 кг/м2 мин.
На второй стадии плавки загружалась и проплавлялась шихта состава: железная руда 170 кг, известь 40 кг и алюминий 115 кг со скоростью загрузки шихты 215 кг/м2 мин., делалась выдержка расплава в плавильном горне 3 мин и затем производился слив расплава продуктов плавки. Дальнейшее увеличение алюминия на второй стадии плавки нецелесообразно, так как снижается термичность плавления шихты и значительная часть алюминия переходит в металл, не участвуя в реакциях довосстановления оксидов ниобия в шлаковом расплаве. Извлечение ниобия в металл составило 92,3%.
Пример 3
В плавильный горн постадийно загружалась и проплавлялась шихта с последующим сливом расплава продуктов плавки.
На первой стадии загружалась и проплавлялась шихта состава: товарный ниобиевый концентрат 1000 кг, железная руда 240 кг, известь 15 кг, натриевая селитра 120 кг и алюминий 385 кг со скоростью загрузки шихты 350 кг/м2 мин.
На второй стадии загружалась и проплавлялась шихта состава: железная руда 140 кг, известь 30 кг и алюминий 85 кг со скоростью загрузки шихты 240 кг/м2 мин. После 3 мин выдержки расплава в плавильном горне производился слив расплава продуктов плавки. Извлечение ниобия в сплав составило 94,7%. Дальнейшее повышение алюминия на первой стадии плавки увеличивает переход кремния и титана в сплав, снижая его качество.
Пример 4
В плавильный горн постадийно загружалась и проплавлялась шихта с последующим сливом расплава продуктов плавки.
На первой стадии загружалась и проплавлялась шихта состава: товарный ниобиевый концентрат 1040 кг, железная руда 226 кг, известь 20 кг, натриевая селитра 125 кг и алюминий 385 кг со скоростью загрузки шихты 350 кг/м2 мин.
На второй стадии загружалась и проплавлялась шихта состава: железная руда 170 кг, известь 40 кг и алюминий 105 кг со скоростью загрузки 250 кг/м2 мин. После 3,5 мин выдержки расплава в плавильном горне производили слив расплава продуктов плавки. Извлечение ниобия на плавке составило 95,1%.
Пример 5
В плавильный горн постадийно загружалась и проплавлялась шихта с последующим сливом расплава продуктов плавки.
На первой стадии загружалась и проплавлялась шихта состава: товарный ниобиевый концентрат 1000 кг, железная руда 215 кг, известь 10 кг, натриевая селитра 120 кг и алюминий 368 кг со скоростью загрузки шихты 360 кг/м2 мин.
На второй стадии загружалась и проплавлялась шихта состава: железная руда 165 кг, известь 30 кг и алюминий в количестве 102 кг со скоростью загрузки шихты 245 кг/м2 мин. После 3,5 мин выдержки расплава в плавильном горне производили слив расплава продуктов плавки. Извлечение ниобия в сплав составило 94,9%.
Плавки (примеры 2-5) протекали спокойно на всех стадиях. После окончания плавления шихты на поверхности расплава в плавильном горне наблюдался «Кип», как результат глубинного довосстановления оксидов ниобия в шлаковом расплаве. На всех плавках получен стандартный низкокремнистый феррониобий марки ФНБ 58 (Ф).
Извлечение ниобия в сплав составило 92,3-95,1%.
При выплавке феррониобия в составе шихты использовался попутный ниобиевый концентрат и товарный ниобиевый концентрат.
Пример 6
В плавильный горн производились стадийная загрузка и плавление шихты с последующим сливом расплава продуктов плавки.
На первой стадии загружалась и проплавлялась шихта состава: попутный ниобиевый концентрат 480 кг, известь75 кг,натриевая селитра 30 кг и алюминий 160 кг со скоростью загрузки шихты 240 кг/м2 мин.
На второй стадии загружалась и проплавлялась шихта состава: товарный ниобиевый концентрат 720 кг, железная руда 65 кг, натриевая селитра 90 кг и алюминий 247 кг со скоростью загрузки шихты 330 кг/м2 мин.
На третьей стадии загружалась и проплавлялась шихта состава: железная руда 120 кг, известь 25 кг и алюминий 73 кг со скоростью загрузки шихты 240 кг/м2 мин.
После 4 мин выдержки расплава в плавильном горне производили слив расплава продуктов плавки. Извлечение ниобия на плавке составило 93%. Дальнейшее увеличение массы попутного ниобиевого концентрата в шихте снижает содержание ниобия и повышает содержание кремния и титана в металле, чем снижается качество сплава.
Пример 7
В плавильный горн постадийно загружалась и проплавлялась шихта с последующим сливом расплава продуктов плавки.
На первой стадии загружалась и проплавлялась шихта состава: попутный ниобиевый концентрат 240 кг, известь 50 кг, натриевая селитра 16 кг и алюминий в количестве 80 кг со скоростью загрузки шихты 215 кг/м2 мин.
На второй стадии загружалась и проплавлялась шихта состава: товарный ниобиевый концентрат 960 кг, железная руда 93 кг, натриевая селитра 109 кг и алюминий 303 кг со скоростью загрузки шихты 325 кг/м2 мин.
На третьей стадии загружалась и проплавлялась шихта состава: железная руда 150 кг, известь 40 кг и алюминий 92 кг со скоростью загрузки шихты 240 кг/м2 мин.
После 3,7 мин выдержки расплава в плавильном горне производили слив расплава продуктов плавки. Извлечение ниобия в металл составило 94,9%. Дальнейшее снижение попутного ниобийсодержащего продукта в шихте снижает экономическую целесообразность его использования.
Пример 8
В плавильный горн производились загрузка и плавление шихты с последующим сливом расплава продуктов плавки.
На первой стадии загружалась и проплавлялась шихта состава: попутный ниобиевый концентрат 400 кг, известь 70 кг, натриевая селитра 26 кг и алюминий 135 кг со скоростью загрузки шихты 240 кг/м2 мин.
На второй стадии загружалась и проплавлялась шихта состава: товарный ниобиевый концентрат 800 кг, железная руда 120 кг, натриевая селитра 94 кг и алюминий 280 кг со скоростью загрузки шихты 345 кг/м2 мин.
На третьей стадии загружалась и проплавлялась шихта состава: железная руда 120 кг, известь 35 кг и алюминий 73 кг со скоростью загрузки шихты 230 кг/м2 мин.
После 4 мин выдержки расплава в плавильном горне производили слив расплава продуктов плавки. Извлечение ниобия в металл составило 94,9%.
Пример 9.
В плавильный горн производились загрузка и плавление шихты с последующим сливом расплава продуктов плавки.
На первой стадии загружалась и проплавлялась шихта состава: попутный ниобиевый концентрат 430 кг, известь 60 кг, натриевая селитра 28 кг и алюминий 145 кг со скоростью загрузки шихты 220 кг/м2 мин.
На второй стадии загружалась и проплавлялась шихта состава: товарный ниобиевый концентрат 770 кг, железная руда 125 кг, натриевая селитра 97 кг и алюминий 270 кг со скоростью загрузки шихты 345 кг/м2 мин.
На третьей стадии загружалась и проплавлялась шихта состава: железная руда 115 кг, известь 25 кг и алюминий 70 кг со скоростью загрузки шихты 240 кг/м2 мин.
После 3 мин выдержки расплава в плавильном горне производили слив расплава продуктов плавки. Извлечение ниобия в металл составило 94,5%.
Плавки (примеры 6-9) протекали спокойно. После плавления шихты на третьей стадии на поверхности расплава в горне наблюдался «Кип» в течение 3-4 мин, как результат глубинного довосстановления остаточных оксидов ниобия в шлаковом расплаве. Получен стандартный низкокремнистый феррониобий марки ФНБ 58 (Ф).
Извлечение ниобия на плавках составило 93-94,9%.
Технологическое отличие предлагаемого способа от известного заключается в том, что в ниобийсодержащих частях шихты происходит совместное восстановление оксидов ниобия и железа, улучшающее условия восстановления ниобия. Плавление ниобийсодержащей шихты с количеством алюминия 0,8-0,99 от стехиометрически необходимого на восстановление элементов сплава феррониобия снижает переход кремния и титана в сплав, при этом оксиды кремния связываются с оксидами кальция, присутствующими в составе шихты, образуя прочное соединение. Плавление на первой стадии попутного ниобиевого концентрата идет с образованием легкоплавкого железо-ниобиевого сплава, не разрушающего футеровку плавильного горна и облегчающего дальнейшее протекание восстановительных процессов ниобия.
Рациональное распределение компонентов шихты в указанных соотношениях по стадиям плавки обеспечивает оптимальную удельную теплоту процесса 19-20 ккал / г-атом и высокую скорость плавления шихты с минимальными тепловыми потерями, что является решающим для поддержания оптимальной температуры алюминотермической плавки феррониобия и условий восстановления ниобия, а также повышения условий эффективного использования алюминия на стадии плавления ниобийсодержащей шихты за счет избыточной концентрации восстанавливаемых окислов по отношению к восстановителю, на последней стадии за счет глубинного восстановления оксидов ниобия в шлаковом расплаве.
По предложенному способу извлечения ниобия в металл составило 92,3-95,1%, что на 7,2-10% выше извлечения по известному способу.
Использование в составе шихты алюминотермической плавки товарного ниобиевого концентрата и нестандартного ниобиевого концентрата обеспечивает получение низкокремнистого феррониобия марки ФНБ 58 (Ф).
SiO2
TiO2
Fe2О3
CaO
S
P
2,5-3,0%
2,0-3,0%
2-3%
12-14%
0,008-0,01%
0,25-0,30%
SiO2
TiO2
Fe2O3
S
P
4-5%
12-15%
44-46,0%
0,02%
0,25-0,30%
2
3
1000
-
100,0
-
-
180
-
49,3
2
-
-
44,7
2
-
-
37,0
2
-
-
43,0
2
-
-
44,0
2
3
720
-
60,0
-
-
-
-
-
65
120
35,0
65,0
2
3
960
-
80,0
-
-
-
93
150
38,3
61,7
2
3
800
-
66,7
-
-
-
-
-
120 120
50,0
50,0
2
3
770
-
64,1
-
-
-
-
-
125 115
52,0
48.0
-
10
-
33,0
115
-
100,0
-
305 100
160,0
40
100,0
-
-
115
200,0
215
30
85
180,0
240
40
-
-
105
174,0
250
30
-
-
183,0
245
-
25
-
25,0
90
-
-
73
95,7
80,5
330
240
-
40
-
45,0
109
-
-
303
92
95,05
182,0
325
240
-
35
-
33,3
94
-
-
280
73
89,8
179,2
345
230
-
25
-
30,0
97
70
95,5
182
345
240
16,4
22,3
Протекает медленно
Протекает бурно с выбросами
18,1
19,0
19,2
19,0
19,0
19,1
19,0
19,0
19,2
18,8
19,4
18,9
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ АЛЮМИНОТЕРМИЧЕСКОГО ПОЛУЧЕНИЯ ФЕРРОНИОБИЯ | 2009 |
|
RU2440435C2 |
СПОСОБ СИЛИКОАЛЮМИНОТЕРМИЧЕСКОГО ПОЛУЧЕНИЯ ФЕРРОВОЛЬФРАМА | 2008 |
|
RU2411299C2 |
СПОСОБ АЛЮМИНОТЕРМИЧЕСКОГО ПОЛУЧЕНИЯ ФЕРРОМОЛИБДЕНА | 2010 |
|
RU2468109C2 |
ШИХТА И ЭЛЕКТРОПЕЧНОЙ АЛЮМИНОТЕРМИЧЕСКИЙ СПОСОБ ПОЛУЧЕНИЯ ФЕРРОНИОБИЯ С ЕЕ ИСПОЛЬЗОВАНИЕМ | 2019 |
|
RU2718497C1 |
СПОСОБ АЛЮМИНОТЕРМИЧЕСКОГО ПОЛУЧЕНИЯ МЕТАЛЛИЧЕСКОГО ХРОМА | 1996 |
|
RU2103401C1 |
Способ внепечной выплавки феррониобия и состав шихты | 2017 |
|
RU2691151C2 |
Способ алюминотермического получения ферротитана | 1980 |
|
SU922170A1 |
СПОСОБ АЛЮМИНОТЕРМИЧЕСКОГО ПОЛУЧЕНИЯ ФЕРРОХРОМА НИЗКОУГЛЕРОДИСТОГО | 2005 |
|
RU2291217C2 |
ШИХТА И СПОСОБ АЛЮМИНОТЕРМИЧЕСКОГО ПОЛУЧЕНИЯ ФЕРРОМОЛИБДЕНА С ЕЕ ИСПОЛЬЗОВАНИЕМ | 2012 |
|
RU2506338C1 |
ШИХТА И ЭЛЕКТРОПЕЧНОЙ АЛЮМИНОТЕРМИЧЕСКИЙ СПОСОБ ПОЛУЧЕНИЯ ФЕРРОХРОМА НИЗКОУГЛЕРОДИСТОГО С ЕЕ ИСПОЛЬЗОВАНИЕМ | 2021 |
|
RU2761839C1 |
Изобретение относится к области металлургии, а именно к способам алюминотермического получения феррониобия. Предложен способ получения феррониобия (варианты). Способ включает стадийные загрузку и проплавление шихты, содержащей ниобиевый концентрат, натриевую селитру, известь, железную руду, алюминий и слив расплава продуктов плавки, при этом в качестве ниобиевого концентрата используют товарный ниобиевый концентрат, на первой стадии загружают шихту со скоростью 300-380 кг/м2мин, содержащую всю массу товарного ниобиевого концентрата и натриевой селитры, 30-70% железной руды от массы плавки, 20-80% извести от массы плавки и алюминий в количестве 0,85-0,99 от стехиометрически необходимого на восстановление элементов сплава феррониобия, на второй стадии загружают шихту в количестве 35-55% от массы пятиокиси ниобия в товарном ниобиевом концентрате первой стадии со скоростью 210-270 кг/м2мин, 30-70% железной руды от массы плавки, 20-80% извести от массы плавки и алюминий в количестве 1,6-2,0 от стехиометрически необходимого на восстановление элементов сплава феррониобия и перед сливом осуществляют выдержку расплава 0,1-0,6 времени проплавления шихты. Технический результат - повышение извлечения и повышение качества полученного сплава феррониобия. 2 н.п. ф-лы, 1 табл.
2000 |
|
RU2173350C1 | |
Способ выплавки ферросплавов | 1982 |
|
SU1076478A1 |
ШИХТА ДЛЯ ВНЕПЕЧНОЙ ВЫПЛАВКИ ФЕРРОНИОБИЯ И СПОСОБ ВНЕПЕЧНОЙ ВЫПЛАВКИ ФЕРРОНИОБИЯ | 2000 |
|
RU2180362C1 |
CN 1172170 A, 04.02.1998. |
Авторы
Даты
2005-08-10—Публикация
2003-11-04—Подача