СПОСОБ ПОЛУЧЕНИЯ ПОРОШКА БЕТА-СИАЛОНА Российский патент 2005 года по МПК C04B38/02 C04B38/10 

Описание патента на изобретение RU2261848C2

Изобретение относится к получению сиалоновых материалов и композиций, применяемых в различных областях науки и техники.

Известен способ [1] получения высокопористого сиалонового материала с использованием в качестве исходной шихты глинистого и углеродного компонентов при следующем соотношении компонентов в смеси, мас.%: глинистый компонент - 76-82, углеродный компонент - 18-24. При этом в качестве глинистого компонента берут каолин, в качестве углеродного - графит. Способ включает формование брикета методом прессования смеси при давлении 25-100 МПа и последующий его отжиг в атмосфере азота при 1400-1450°С в течение 3-4 ч.

Недостатком известного способа является большое (более 3 часов) время высокотемпературного обжига.

Наиболее близким по технической сущности и достигаемому результату к предлагаемому техническому решению является способ [2] получения β-сиалона (Si6-zAlzN8-zOz, z=2,7-4,0) из минерального сырья, в частности из муллитообразующей породы (каолина), путем его карботермического восстановления при температуре 1300-1500°С в течение 0,5-6 часов в атмосфере азота. Способ предполагает предварительную термообработку исходной муллитообразующей породы в присутствии щелочи для удаления аморфного оксида кремния и получения активной к карботермическому азотированию шихты с удельной поверхностью алюмосиликатного компонента более 50 м2/г.

Недостатками известного способа являются (1) сложность и длительность технологического процесса, обусловленные наличием сложных операций предварительной подготовки муллитообразующей породы, а также (2) большой разброс в размерах частиц получаемого порошка β-сиалона.

Предлагаемым изобретением решается задача создания более скоростного и простого в реализации способа получения порошка β-сиалона, позволяющего, кроме того, получать порошок β-сиалон с заданным размером частиц.

Поставленная задача решается тем, что при получении порошка β-сиалона путем карботермического восстановления каолина в атмосфере азота используют шихту, содержащую углеродный компонент с размером частиц 20-500 нм, а ее термообработку проводят при температуре 1710-1780°С в течение 5-25 мин.

При этом может быть использована шихта с заданным размером частиц углеродного компонента, определяемым исходя из соотношения

Dc=DSIALON/1,93,

где Dc - средний размер частиц вводимого в шихту углеродного компонента,

DSIALON - средний размер частиц получаемого порошка β-сиалона.

Техническим результатом предлагаемого изобретения является обеспечение преобразования твердого алюмосиликатного компонента шихты в газообразное состояние и соответственно ускорение его реакции с твердым углеродным компонентом и газообразным азотом.

Технический результат достигается выбором температурного и временного режима проведения карботермического восстановления каолина в атмосфере азота. При температуре 1710-1780°С продукт термического разложения каолина (алюмосиликатного компонента) восстанавливается до газообразных оксидов Al2O и SiO, после чего он быстро (в течение нескольких минут) вместе с азотом взаимодействует с частицами углеродного компонента таким образом, что частица углеродного компонента трансформируется в частицу β-сиалона. Перевод алюмосиликатных компонентов в газовую фазу позволяет увеличить скорость проведения реакции образования β-сиалона. Участие углеродного компонента в качестве субстрата при образовании β-сиалона при взаимодействии с газообразными азотом, Al2O и SiO позволяет регулировать размер частиц получаемого β-сиалона посредством использования дисперсного углеродного компонента с заданным размером частиц.

Предлагаемый способ заключается в следующем. Исходным компонентом для получения β-сиалона служит каолин (Al2O3·2SiO2·2H2O) и углеродный компонент, в качестве которого может быть использована печная сажа. Шихту готовят одним из известных способов. Например, каолин (70-80 мас.%) и печную сажу (20-30 мас.%) смешивают в присутствии воды при влажности 60-70% в лопастной мешалке в течение 15-40 мин. Полученную суспензию сушат при температуре 110-120°С. Высушенную смесь (шихту) в графитовом тигле помещают в проточную печь с графитовым нагревателем. Через рабочий объем печи организуют ток азота с расходом 1-5 л/мин. Печь разогревают до температуры 1710-1780°С со скоростью 50-100°/мин и выдерживают при этой температуре в течение 5-25 мин. Охлаждение проводят вместе с печью до комнатной температуры. Продукт извлекают из графитового тигля, тщательно перетирают и проводят аттестацию продукта с использованием рентгенофазового, электронно-микроскопического и химического анализов.

Предлагаемый способ с получением частиц β-сиалона с определенным размером иллюстрируется следующими примерами.

Пример 1. Берут 16 г (80 мас.%) просяновского каолина и 4 г (20 мас.%) углерода в виде сажи ПМ-75 (средний размер частиц углерода - 40 нм). Компоненты тщательно перемешивают в присутствии воды (влажность 65%), сушат до постоянной массы и в графитовом тигле помещают в проточную печь с графитовым нагревателем. Расход азота через рабочий объем печи - 1 л/мин. Разогрев печи осуществляют со скоростью 50°С/мин. до 1710°С. Тигель со смесью выдерживают при этой температуре 5 мин в токе азота. Тигель охлаждают до комнатной температуры вместе с печью. По данным химического и рентгенофазового анализов полученный продукт является β-сиалоном общей формулы Si3Al3O3N5, примеси - SiC, AlN. Выход - 87%. По данным растровой электронной микроскопии средний размер частиц полученного порошка - 110 нм.

Пример 2. Берут 35 г (70 мас.%) кыштымского каолина и 15 г (30 мас.%) углерода в виде сажи ПМ-100 (средний размер частиц углерода - 30 нм). Компоненты тщательно перемешивают в присутствии воды (влажность 70%), сушат до постоянной массы и в графитовом тигле помещают в проточную печь с графитовым нагревателем. Расход азота через рабочий объем печи - 5 л/мин. Разогрев печи осуществляют со скоростью 70°С/мин до 1780°С. Тигель со смесью выдерживают при этой температуре 25 мин в токе азота. Тигель охлаждают до комнатной температуры вместе с печью. По данным химического и рентгенофазового анализов полученный продукт является β-сиалоном общей формулы Si3Al3О3N5, примеси - SiC, AlN. Выход - 86%. По данным растровой электронной микроскопии средний размер частиц полученного порошка - 76 нм.

Пример 3. Берут 30 г (75 мас.%) глуховецкого каолина и 11,25 г (25 мас.%) углерода в виде сажи ПМ-150 (средний размер частиц углерода - 20 нм). Компоненты тщательно перемешивают в присутствии воды (влажность 60%), сушат до постоянной массы и в графитовом тигле помещают в проточную печь с графитовым нагревателем. Расход азота через рабочий объем печи - 3 л/мин. Разогрев печи осуществляют со скоростью 100°С/мин до 1750°С. Тигель со смесью выдерживают при этой температуре 15 мин в токе азота. Тигель охлаждают до комнатной температуры вместе с печью. По данным химического и рентгенофазового анализов полученный продукт является β-сиалоном общей формулы Si3Al3О3N5, примеси - SiC, AlN. Выход - 85%. По данным растровой электронной микроскопии средний размер частиц полученного порошка - 65 нм.

Выбор параметров осуществления заявляемого способа обусловлен следующим.

При содержании углерода в исходной шихте менее 20 мас.% получаемый материал в качестве примеси содержит корунд. При содержании углерода в исходной шихте более 30 мас.% получаемый материал содержит более 18 мас.% SiC.

При уменьшении времени смешивания каолина и углерода менее 15 мин не происходит необходимое для достижения технического результата пространственное сопряжение частиц каолина и углеродного компонента в смеси.

При расходе азота, пропускаемого через рабочую зону печи, менее 1 л/мин его количества недостаточно для протекания реакции карботермического азотирования.

При разогреве печи до температуры термообработки со скоростью менее 50°/мин реакционная смесь длительное время находится при температуре <1500°С, при которой происходят процессы муллитизации каолина, что препятствует достижению технического результата и приводит к уменьшению содержания β-сиалона в продукте синтеза.

Недостаточное время (менее 5 мин) термообработки реакционной смеси при температуре синтеза приводит к неполному протеканию химических реакций, и, как следствие, к загрязнению продукта углеродом. Термообработка свыше 25 мин приводит к спеканию (увеличению размеров частиц) продукта реакции и, следовательно, препятствует регулированию размера частиц получаемого β-сиалона.

Уменьшение размера частиц углерода менее 20 нм приводит к тому, что в результате синтеза получается порошок β-сиалона с размером частиц менее верхней границы области критических размеров β-сиалона (D+SIALON=40-60 нм), что обуславливает его высокую активность к спеканию и, следовательно, препятствует регулированию размера частиц получаемого β-сиалона. Увеличение размера частиц углерода более 500 нм уменьшению скорости образования β-сиалона.

Таким образом, предлагаемый способ получения β-сиалона позволяет не только уменьшить время синтеза β-сиалона, но и регулировать размер частиц порошка β-сиалона простым технологическим способом, исключающим ряд дополнительных операций.

Использованные источники информации:

1. Пат. RU 2191759, Анциферов В.Н., Гилев В.Г. Способ получения пористого материала, МПК С 04 В 35/599, 1999.10.26.

2. Pat. EP 0289440, Moya Corral Jose S., De Aza Pendas Salvador, Morales Poyato Francisco, Valle Fuentes Francisco J., Osendi Miranda Isabel, Martinez Caceres Rafael, Corral Martinez Ma Paz, A method for the production of beta'-sialon based ceramic powders, IPC C 01 B 21/082, C 04 B 35/58, 1988.11.02.

Похожие патенты RU2261848C2

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ УЛЬТРАДИСПЕРСНОГО ПОРОШКА БЕТА-СИАЛОНА 2009
  • Александров Петр Анатольевич
  • Попова Нелли Александровна
RU2421428C2
СПОСОБ ПОЛУЧЕНИЯ КЕРАМИКИ СИАЛОНА (SIALON) С ПОМОЩЬЮ ЭНЕРГИИ ПЛАЗМЫ 2021
  • Власов Виктор Алексеевич
  • Волокитин Геннадий Георгиевич
  • Клопотов Анатолий Анатольевич
  • Шеховцов Валентин Валерьевич
  • Безухов Константин Александрович
RU2798804C2
СПОСОБ ПОЛУЧЕНИЯ БЕТА-СИАЛОНА 2008
  • Швейкин Геннадий Петрович
  • Латош Ирина Николаевна
  • Шевченко Владимир Григорьевич
RU2384546C2
СПОСОБ ПОЛУЧЕНИЯ ПОРИСТОГО МАТЕРИАЛА 1999
  • Анциферов В.Н.
  • Гилев В.Г.
RU2191759C2
Способ получения высокодисперсного порошка карбида кремния 2022
  • Лысенков Антон Сергеевич
  • Фролова Марианна Геннадьевна
  • Каргин Юрий Федорович
  • Ким Константин Александрович
RU2784758C1
Способ получения смесей высокодисперсных гетерофазных порошков на основе карбида бора 2018
  • Коцарь Татьяна Викторовна
  • Данилович Дмитрий Петрович
  • Зайцев Геннадий Петрович
  • Орданьян Сукяс Семенович
RU2683107C1
СПОСОБ ПОЛУЧЕНИЯ ПОРОШКА СИАЛОНА 2008
  • Чухломина Людмила Николаевна
  • Витушкина Ольга Геннадьевна
  • Максимов Юрий Михайлович
RU2378227C1
СПОСОБ ПОЛУЧЕНИЯ КАРБИДА КРЕМНИЯ 2022
  • Пиирайнен Виктор Юрьевич
  • Бажин Владимир Юрьевич
  • Игнатьев Кирилл Борисович
  • Старовойтов Владимир Николаевич
RU2789998C1
СПОСОБ ПОЛУЧЕНИЯ КАТАЛИЗАТОРА ДЛЯ ОЧИСТКИ СТОЧНЫХ ВОД ОТ ФЕНОЛА, КАТАЛИЗАТОР, ПОЛУЧЕННЫЙ ЭТИМ СПОСОБОМ, И СПОСОБ ОЧИСТКИ СТОЧНЫХ ВОД ОТ ФЕНОЛА С ИСПОЛЬЗОВАНИЕМ ЭТОГО КАТАЛИЗАТОРА 2013
  • Чухломина Людмила Николаевна
  • Скворцова Лидия Николаевна
  • Болгару Константин Александрович
  • Максимов Юрий Михайлович
RU2540579C2
Способ получения 21R-сиалоновой керамики 2021
  • Лысенков Антон Сергеевич
  • Фролова Марианна Геннадьевна
  • Каргин Юрий Федорович
  • Титов Дмитрий Дмитриевич
  • Ким Константин Александрович
  • Ивичева Светлана Николаевна
RU2757607C1

Реферат патента 2005 года СПОСОБ ПОЛУЧЕНИЯ ПОРОШКА БЕТА-СИАЛОНА

Способ получения порошка β-сиалона путем карботермического восстановления каолина включает термообработку шихты в атмосфере азота при температуре 1710-1780°С в течение 5-25 мин. Шихта содержит углеродный компонент с размером частиц 20-500 нм. Средний размер частиц получаемого порошка β-сиалона может регулироваться посредством использования дисперсного углеродного компонента шихты с заданным размером частиц. Технический результат изобретения - создание более скоростного и простого в реализации способа получения порошка β-сиалона, позволяющего получать β-сиалон с заданным размером частиц. 1 з.п. ф-лы.

Формула изобретения RU 2 261 848 C2

1. Способ получения порошка β-сиалона путем карботермического восстановления каолина в атмосфере азота, отличающийся тем, что шихта содержит углеродный компонент с размером частиц 20-500 нм, а ее термообработку проводят при температуре 1710-1780°С в течение 5-25 мин.2. Способ по п.1, отличающийся тем, что используют шихту с заданным размером частиц углеродного компонента, определяемым, исходя из соотношения

DC=DSIALON/1,93, где

DC - средний размер частиц вводимого в шихту углеродного компонента;

DSIALON - средний размер частиц получаемого порошка β-сиалона.

Документы, цитированные в отчете о поиске Патент 2005 года RU2261848C2

0
SU289440A1

RU 2 261 848 C2

Авторы

Долгушев Н.В.

Даты

2005-10-10Публикация

2003-05-20Подача