СПОСОБ НАВЕДЕНИЯ УПРАВЛЯЕМОЙ РАКЕТЫ И СИСТЕМА НАВЕДЕНИЯ ДЛЯ ЕГО РЕАЛИЗАЦИИ Российский патент 2006 года по МПК F41G7/00 

Описание патента на изобретение RU2277690C1

Предлагаемый способ наведения управляемой ракеты и система наведения для его реализации относятся к области разработки систем управления ракетами и могут быть использованы в противотанковых ракетных комплексах (ПТРК).

Наиболее близким к предлагаемому является способ наведения противотанковой ракеты, реализованный в ПТРК 9К111 «Фагот» и взятый в качестве прототипа [1. Пусковая установка 9П135. Техническое описание. Ордена Трудового Красного Знамени Военное издательство Министерства обороны СССР, Москва - 1975 г., стр.11-13], включающий запуск противотанковой ракеты с бортовым источником излучения, прохождение светового потока от источника излучения через объектив и оптический растр, модуляцию светового потока с помощью оптического растра, прием модулированного светового потока от источника излучения фотоприемником со сплошной фоточувствительной поверхностью, выделение координат бортового источника излучения, определение координат противотанковой ракеты и формирование команд управления противотанковой ракетой.

Наиболее близкой к предлагаемой является система наведения противотанковой ракеты, реализующая известный способ наведения противотанковой ракеты и применяемая в переносном ПТРК 9К111 «Фагот» [1. Пусковая установка 9П135. Техническое описание. Ордена Трудового Красного Знамени Военное издательство Министерства обороны СССР, Москва, - 1975 г., стр.11-13]. Эта система наведения содержит последовательно соединенные объектив, принимающий сигнал от бортового источника излучения, оптический растр, фотоприемник излучения, усилитель фототока, блок выделения координат и блок формирования команд, а также генератор опорных напряжений, подключенный между оптическим растром и блоком выделения координат.

Функциональная схема системы наведения противотанковой ракеты, реализующей известный способ наведения противотанковой ракеты, приведена на фиг.1.

Система наведения противотанковой ракеты работает следующим образом. Входным воздействием для нее является угловое отклонение бортового источника излучения противотанковой ракеты от линии прицеливания. Объектив (1) фокусирует излучение фоноцелевой обстановки (ФЦО) с бортовым источником излучения на оптическом растре (2), который имеет прозрачные и непрозрачные сектора, расположенные радиально, и совершает плоскопараллельное перемещение (сканирование), что обеспечивает частотную модуляцию и пространственную селекцию светового потока бортового источника излучения. Частотно-модулированный световой поток воспринимается фотоприемником излучения (3) и преобразуется в соответствующие электрические сигналы. Частотно-модулированный сигнал с фотоприемника поступает в усилитель фототока (4), где усиливается до необходимого значения. Выходной сигнал с усилителя фототока содержит информацию об угловых отклонениях источника излучения ракеты от линии прицеливания, которая поступает в блок выделения координат (5). После преобразования сигнала усилителя фототока блок выделения координат вырабатывает напряжения, соответствующие уже линейным отклонениям ракеты от линии прицеливания. В качестве опорных напряжений при фазовом детектировании используются сигналы с генератора опорных напряжений (7). Напряжения, пропорциональные отклонения ракеты от линии прицеливания по курсу и тангажу, с выхода блока выделения координат поступают на блок формирования команд (6), где преобразуются в сигналы управления, предназначенные для передачи по проводной линии связи (ПЛС) на ракету.

Современные условия развития ПТРК поставили задачу преодоления ряда принципиальных технических трудностей, свойственных данным способу наведения противотанковой ракеты и системе наведения для его реализации. В первую очередь, это относится к невозможности обеспечения постоянного на всем протяжении полета соотношения сигнал/шум в системы наведения. Это обусловлено тем, что фотоприемник, например, при высоком температурном воздействии генерирует большое количество шумовых электронов, число которых остается постоянным на всем полетном времени ракеты, в то время как световой поток от бортового источника излучения, падающий на входной зрачок ОС, уменьшается обратно пропорционально квадрату дальности до ракеты. Вследствие уменьшения соотношения сигнал/шум существенно снижается точность выделения координат ракеты, при этом ухудшается помехозащищенность и уменьшается чувствительность всей системы управления. Для увеличения светового потока бортового источника излучения в процессе полета ракеты необходимо повышать мощность его излучения, а это потребует дополнительной доработки бортовой аппаратуры управления, что приведет, в конечном счете, к увеличению ее габаритов и веса, а также к усложнению.

Задачей предлагаемого изобретения является разработка такого способа наведения управляемой ракеты и системы наведения для его реализации, которые позволили бы повысить качество наведения ракеты без изменения конструкции самой ракеты, обеспечить высокий уровень соотношения сигнал/шум на всем протяжении полетного времени управляемой ракеты и хорошую помехозащищенность всей системы управления без ее существенного усложнения.

Поставленная задача решается тем, что в способе наведения управляемой ракеты, включающем старт управляемой ракеты, прием и фокусировку на фотоприемнике излучения ФЦО, содержащее излучение фона и излучение источника полезного сигнала, выделение координат источника полезного сигнала, определение координат управляемой ракеты и формирование команд управления для передачи на ракету, после старта управляемой ракеты рассчитывают минимальный уровень выходного сигнала с фотоприемника UMIN, учитывающий шумовую составляющую фотоприемника и фоновую составляющую излучения ФЦО, рассчитывают необходимый для надежного сопровождения управляемой ракеты максимальный уровень выходного сигнала с фотоприемника UMAX, а после фокусировки светового потока от бортового источника излучения изменяют время экспозиции фотоприемника таким образом, чтобы выходной сигнал с фотоприемника, соответствующий падающему излучению от бортового источника излучения соответствовал условию:

Поставленная задача решается также тем, что в систему наведения управляемой ракеты, содержащая последовательно соединенные объектив, фотоприемник излучения, блок выделения координат и блок формирования команд дополнительно введены анализирующее устройство, последовательно соединенные блок оценки освещенности, блок сравнения и блок регулировки чувствительности, причем второй выход фотоприемника излучения подключен к входу анализирующего устройства, выход которого подключен ко второму входу блока сравнения, выход блока регулировки чувствительности подключен ко второму входу фотоприемника излучения, а блок оценки освещенности подключен между фотоприемником излучения и блоком выделения координат.

Сущность предлагаемого способа наведения заключается в следующем. В качестве приемника излучения используется фотоприемник с ячеистой структурой фоточувствительной поверхности, который может быть выполнен на основе высокочастотного матричного сенсора с переносом заряда [Приборы с зарядовой связью. Под ред. Д.Ф.Барда, Москва, 1982 г.]. Характерной особенностью данного вида фотоприемников является низкий уровень внутренних шумов и возможность регулировки времени накопления зарядовых пакетов.

Элементарная мощность светового потока от бортового источника излучения, достигающего чувствительных ячеек фотоприемника излучения в спектральном диапазоне работы оптической системы (ОС), определяется по выражению:

где Ω - телесный угол , под которым виден входной зрачок ОС из точки, в которой находится бортовой источник излучения;

τОСЛ(λ) - спектральный коэффициент пропускания ОС, учитывающий пропускание ее всех оптических элементов;

I(λ) - спектральная плотность силы излучения бортового источника излучения управляемой ракеты, Вт/ср·мкм.

Элементарная энергия светового потока от бортового источника излучения, достигающего чувствительных ячеек фотоприемника излучения в спектральном диапазоне работы оптической системы (ОС), определяется по выражению:

где τИ - время накопления заряда, с.

В течение времени накопления τu обеспечивается восприятие светового потока фотоприемником, формирование фотозарядов, отображающих пространственное распределение поля излучения, а также происходит генерация электронов в фотоприемнике излучения, пропорциональное падающему потоку фотонов от бортового источника излучения.

В зависимости от фокусного расстояния ОС, текущей дальности до управляемой ракеты и геометрических размеров самого бортового источника излучения ракеты на чувствительной поверхности фотоприемника излучения образуются изображения, линейные размеры которого определяются по выражениям:

где НY - текущий линейный размер изображения бортового источника излучения по вертикали;

НZ - текущей линейный размер изображения бортового источника излучения по горизонтали;

hY - геометрический размер бортового источника излучения по вертикали;

hZ - геометрический размер бортового источника излучения по горизонтали;

f' - фокусное расстояние ОС;

D - текущая дальность до управляемой ракеты.

От текущих линейных размеров изображения бортового источника излучения по вертикали и горизонтали будет зависеть площадь данного изображения и, как следствие, количество засвеченных бортовым источником ячеек фотоприемника излучения:

где аy, аz - линейный размер ячейки фотоприемника по вертикали и горизонтали соответственно.

Элементарная энергия светового потока от бортового источника излучения, приходящаяся на 1 ячейку фотоприемника определяется по выражению:

где - число засвеченных ячеек бортовым источником излучения.

Количество квантов, соответствующее элементарному потоку излучения от бортового источника излучения, приходящееся на 1 ячейку фотоприемника определяется по выражению:

Количество электронов, генерируемых 1 ячейкой фотоприемника от элементарного светового потока бортового источника излучения, определяется по выражению:

где η(λ) - спектр квантового выхода материала фотоприемника излучения.

Общее количество электронов, генерируемых 1 ячейкой фотоприемника от светового потока бортового источника излучения в спектральном диапазоне λ1÷λ2:

В соответствии с формулой (10), общее количество электронов, генерируемых 1 ячейкой фотоприемника, от светового потока фоновой составляющей излучения ФЦО в спектральном диапазоне λ1÷λ2 определяется по зависимости:

где NШ - количество электронов от фоновой засветки, генерируемых 1 ячейкой фотоприемника;

I(λ) - спектральная плотность силы излучения фона, Вт/ср·мкм;

- число засвеченных ячеек фоновой составляющей излучения ФЦО.

Тогда соотношение сигнал/шум на выходе фотоприемника излучения определяется по выражению:

Как следует из выражения (10), регулировка времени накопления заряда позволяет увеличивать количество электронов полезного сигнала Ne, что обеспечивает повышение соотношения сигнал/шум К до необходимого значения, определяемое выражением , пропорционально увеличивающейся дальности до управляемой ракеты в течение всего ее полетного времени.

Функциональная схема системы наведения управляемой ракеты, реализующей предлагаемый способ наведения управляемой ракеты, приведена на фиг.2.

Система наведения управляемой ракеты работает следующим образом. Излучение фоноцелевой обстановки (ФЦО) с бортовым источником излучения объектив (1) фокусирует непосредственно на фотоприемнике излучения (3), выполненном на основе фоточувствительного прибора матричного типа, на чувствительных ячейках которого образуется засвеченное пространство (изображение) от бортового источника излучения. Блок оценки освещенности (9) определяет, какое количество электронов полезного сигнала Ne генерирует 1 ячейка фотоприемника излучения в текущий момент от падающего на нее потока излучения от бортового источника и передает эти данные в блок сравнения (10). В блок сравнения также поступает информация о текущем значении минимального уровня выходного сигнала с фотоприемника UMIN, учитывающего шумовую составляющую фотоприемника и фоновую составляющую излучения ФЦО, а также необходимый для надежного сопровождения управляемой ракеты максимальный уровень выходного сигнала с фотоприемника UMAX. Блок сравнения производит анализ соотношения и осуществляет необходимую коррекцию при помощи блока регулировки чувствительности (11) времени экспозиции фотоприемника излучения для обеспечения необходимого соотношения на следующем шаге выделения координат управляемой ракеты. Таким образом, на выходе фотоприемника излучения всегда формируется сигнал достаточной величины, содержащий информацию об угловых отклонениях бортового источника излучения управляемой ракеты от линии прицеливания, которая поступает в блок выделения координат (5), на выходе которого формируются напряжения, соответствующие линейным отклонениям ракеты от линии прицеливания. Напряжения, пропорциональные отклонения ракеты от линии прицеливания по курсу и тангажу, с выхода блока выделения координат поступают на блок формирования команд (6), где преобразуются в сигналы управления, предназначенные для передачи на ракету.

В предлагаемой системе наведения управляемой ракеты оптическая система, блок выделения координат и блок формирования команд могут быть выполнены как в прототипе. Фотоприемник излучения может быть выполнен на основе высокочастотного матричного сенсора с переносом заряда [2]. Анализирующее устройство, блок оценки освещенности, блок сравнения и блок регулировки чувствительности могут быть выполнены на основе сигнальных микропроцессоров [3] и программируемых логических интегральных схем [4].

Предлагаемый способ наведения управляемой ракеты и система наведения для его реализации по сравнению с прототипами позволяют достичь:

- постоянно высокого уровня соотношения сигнал/шум на всем протяжении полетной дальности управляемой ракеты;

- обеспечения высокой точности наведения ракеты без существенного усложнения аппаратуры управления;

- повышения помехозащищенности системы управления в целом.

Источники информации

1. Пусковая установка 9П135. Техническое описание. Ордена Трудового Красного Знамени Военное издательство Министерства обороны СССР, Москва, 1975 г., с.11-13 - прототип.

2. Приборы с зарядовой связью. Под ред. Д.Ф.Барда, Москва, 1982 г.

3. Руководство пользователя по сигнальным микропроцессорам ADSP-2100 / Пер. с англ. О.В.Луневой; Под ред. А.Д.Викторова; Санкт-Петербургский государственный электротехнический университет. - Санкт-Петербург, 1997. - 520 с.

4. В.Б.Стешенко. ПЛИС фирмы «ALTERA»: Проектирование устройств обработки сигналов. / М.: «Додека», 2000 г.

Похожие патенты RU2277690C1

название год авторы номер документа
СПОСОБ НАВЕДЕНИЯ УПРАВЛЯЕМОЙ РАКЕТЫ И СИСТЕМА НАВЕДЕНИЯ ДЛЯ ЕГО РЕАЛИЗАЦИИ 2005
  • Тикменов Василий Николаевич
  • Карамов Сергей Вадимович
  • Викторов Виктор Михайлович
  • Купцов Сергей Владимирович
  • Дудка Вячеслав Дмитриевич
  • Пальцев Михаил Витальевич
RU2277689C1
СПОСОБ НАВЕДЕНИЯ УПРАВЛЯЕМОЙ РАКЕТЫ И СИСТЕМА НАВЕДЕНИЯ ДЛЯ ЕГО РЕАЛИЗАЦИИ 2005
  • Тикменов Василий Николаевич
  • Карамов Сергей Вадимович
  • Перов Юрий Викторович
  • Дудка Вячеслав Дмитриевич
  • Пальцев Михаил Витальевич
RU2277688C1
СПОСОБ НАВЕДЕНИЯ УПРАВЛЯЕМОЙ РАКЕТЫ И СИСТЕМА НАВЕДЕНИЯ ДЛЯ ЕГО РЕАЛИЗАЦИИ 2004
  • Дудка Вячеслав Дмитриевич
  • Погорельский Семен Львович
  • Пальцев Михаил Витальевич
  • Понятский Валерий Мариафович
  • Тикменов Василий Николаевич
  • Карамов Сергей Вадимович
RU2282127C2
СПОСОБ НАВЕДЕНИЯ УПРАВЛЯЕМОЙ РАКЕТЫ И СИСТЕМА НАВЕДЕНИЯ ДЛЯ ЕГО РЕАЛИЗАЦИИ 2005
  • Дудка Вячеслав Дмитриевич
  • Погорельский Семен Львович
  • Галантэ Александр Иосифович
  • Пальцев Михаил Витальевич
  • Понятский Валерий Мариафович
RU2282128C1
СПОСОБ НАВЕДЕНИЯ УПРАВЛЯЕМОЙ РАКЕТЫ И СИСТЕМА НАВЕДЕНИЯ ДЛЯ ЕГО РЕАЛИЗАЦИИ 2004
  • Степаничев И.В.
  • Погорельский С.Л.
  • Галантэ А.И.
  • Пальцев М.В.
  • Тикменов В.Н.
  • Карамов С.В.
RU2260161C1
СПОСОБ НАВЕДЕНИЯ УПРАВЛЯЕМОЙ РАКЕТЫ И СИСТЕМА НАВЕДЕНИЯ ДЛЯ ЕГО РЕАЛИЗАЦИИ 2005
  • Шипунов Аркадий Георгиевич
  • Степаничев Игорь Вениаминович
  • Погорельский Семен Львович
  • Пальцев Михаил Витальевич
  • Понятский Валерий Мариафович
  • Чинарев Андрей Викторович
RU2290592C1
СПОСОБ НАВЕДЕНИЯ УПРАВЛЯЕМОЙ РАКЕТЫ И СИСТЕМА НАВЕДЕНИЯ ДЛЯ ЕГО РЕАЛИЗАЦИИ 2004
  • Шипунов А.Г.
  • Степаничев И.В.
  • Погорельский С.Л.
  • Галантэ А.И.
  • Пальцев М.В.
  • Понятский В.М.
  • Чинарев А.В.
  • Карамов С.В.
  • Тикменов В.Н.
RU2258887C1
СПОСОБ НАВЕДЕНИЯ УПРАВЛЯЕМОЙ РАКЕТЫ И СИСТЕМА НАВЕДЕНИЯ ДЛЯ ЕГО РЕАЛИЗАЦИИ 2005
  • Дудка Вячеслав Дмитриевич
  • Степаничев Игорь Вениаминович
  • Погорельский Семен Львович
  • Галантэ Александр Иосифович
  • Пальцев Михаил Витальевич
  • Понятский Валерий Мариафович
RU2290593C1
СПОСОБ НАВЕДЕНИЯ УПРАВЛЯЕМОЙ РАКЕТЫ И СИСТЕМА НАВЕДЕНИЯ ДЛЯ ЕГО РЕАЛИЗАЦИИ 2003
  • Дудка В.Д.
  • Захаров Л.Г.
  • Погорельский С.Л.
  • Галантэ А.И.
  • Пальцев М.В.
RU2241195C1
СПОСОБ НАВЕДЕНИЯ УПРАВЛЯЕМОЙ РАКЕТЫ И СИСТЕМА НАВЕДЕНИЯ ДЛЯ ЕГО РЕАЛИЗАЦИИ 2013
  • Шипунов Аркадий Георгиевич
  • Захаров Лев Григорьевич
  • Погорельский Семен Львович
  • Фимушкин Валерий Сергеевич
  • Галантэ Александр Иосифович
  • Понятский Валерий Мариафович
RU2539728C1

Иллюстрации к изобретению RU 2 277 690 C1

Реферат патента 2006 года СПОСОБ НАВЕДЕНИЯ УПРАВЛЯЕМОЙ РАКЕТЫ И СИСТЕМА НАВЕДЕНИЯ ДЛЯ ЕГО РЕАЛИЗАЦИИ

Изобретения относятся к области разработки систем управления ракетами и могут быть использованы в противотанковых ракетных комплексах (ПТРК). Технический результат - повышение качества наведения ракеты без изменения конструкции самой ракеты, обеспечение высокого уровня соотношения сигнал/шум на всем протяжении полетного времени управляемой ракеты и хорошей помехозащищенности всей системы управления без ее существенного усложнения. В способе наведения управляемой ракеты, включающем старт управляемой ракеты, прием и фокусировку на фотоприемнике излучения ФЦО, содержащего излучение фона и излучение источника полезного сигнала, выделение координат источника полезного сигнала, определение координат управляемой ракеты и формирование команд управления для передачи на ракету, после старта управляемой ракеты рассчитывают минимальный уровень выходного сигнала с фотоприемника UMIN, учитывающий шумовую составляющую фотоприемника и фоновую составляющую излучения ФЦО. Рассчитывают необходимый для надежного сопровождения управляемой ракеты максимальный уровень выходного сигнала с фотоприемника UMAX. После фокусировки светового потока от бортового источника излучения изменяют время экспозиции фотоприемника таким образом, чтобы выходной сигнал с фотоприемника, соответствующий падающему излучению от бортового источника излучения соответствовал условию: В систему наведения управляемой ракеты, содержащую последовательно соединенные объектив, фотоприемник излучения, блок выделения координат и блок формирования команд, дополнительно введены анализирующее устройство, последовательно соединенные блок оценки освещенности, блок сравнения и блок регулировки чувствительности. Причем второй выход фотоприемника излучения подключен к входу анализирующего устройства, выход которого подключен ко второму входу блока сравнения, выход блока регулировки чувствительности подключен ко второму входу фотоприемника излучения. Блок оценки освещенности подключен между фотоприемником излучения и блоком выделения координат. 2 н.п. ф-лы. 2 ил.

Формула изобретения RU 2 277 690 C1

1. Способ наведения управляемой ракеты, включающий старт управляемой ракеты, прием и фокусировку на фотоприемнике излучения фоноцелевой обстановки (ФЦО), содержащего излучение фона и излучение источника полезного сигнала, выделение координат источника полезного сигнала, определение координат управляемой ракеты и формирование команд управления для передачи на ракету, отличающийся тем, что после старта управляемой ракеты рассчитывают минимальный уровень выходного сигнала с фотоприемника UMIN, учитывающий шумовую составляющую фотоприемника и фоновую составляющую излучения ФЦО, рассчитывают необходимый для надежного сопровождения управляемой ракеты максимальный уровень выходного сигнала с фотоприемника UMAX, a после фокусировки светового потока от бортового источника излучения изменяют время экспозиции фотоприемника таким образом, чтобы выходной сигнал с фотоприемника, соответствующий падающему излучению от бортового источника излучения соответствовал условию 2. Система наведения управляемой ракеты, содержащая последовательно соединенные объектив, фотоприемник излучения, блок выделения координат и блок формирования команд, отличающаяся тем, что в нее дополнительно введены анализирующее устройство, последовательно соединенные блок оценки освещенности, блок сравнения и блок регулировки чувствительности, причем второй выход фотоприемника излучения подключен к входу анализирующего устройства, выход которого подключен ко второму входу блока сравнения, выход блока регулировки чувствительности подключен ко второму входу фотоприемника излучения, а блок оценки освещенности подключен между фотоприемником излучения и блоком выделения координат.

Документы, цитированные в отчете о поиске Патент 2006 года RU2277690C1

Разборный с внутренней печью кипятильник 1922
  • Петухов Г.Г.
SU9A1
СТОПОР ДЛЯ ОТСЕЧКИ ШЛАКА В КОНВЕРТЕРЕ 1998
  • Кукарцев В.М.
  • Захаров Д.В.
  • Филяшин М.К.
  • Хребин В.Н.
  • Суханов Ю.Ф.
  • Ярошенко А.В.
  • Смольянинов В.И.
  • Лебедев В.И.
RU2148656C1
ВНУТРИМАТОЧНЫЙ КОНТРАЦЕПТИВ 1992
  • Воиченков С.А.
  • Жаркин А.Ф.
  • Мотянин Г.Н.
  • Серов В.Н.
RU2049449C1
СПОСОБ СТРЕЛЬБЫ СНАРЯДОМ И СТРЕЛЯЮЩИЙ КОМПЛЕКС 2001
  • Кузнецов Ю.М.
  • Копылов Ю.Д.
  • Красеньков В.Н.
  • Кострицин А.В.
  • Жужгинов В.А.
RU2210725C2

RU 2 277 690 C1

Авторы

Тикменов Василий Николаевич

Карамов Сергей Вадимович

Перов Юрий Викторович

Дудка Вячеслав Дмитриевич

Пальцев Михаил Витальевич

Даты

2006-06-10Публикация

2005-07-08Подача