Изобретение относится к области машиностроения, а именно к припоям для пайки разнородных соединений бериллия с конструкционными сплавами - нержавеющей сталью и монелем, используемых в качестве оправ при изготовлении рентгеновских окон и других контрольно-измерительных приборов.
Бериллий обладает высокой радиационной прозрачностью для рентгеновских лучей, и используется в качестве выходных окон при изготовлении рентгеновских трубок и входных окон в датчиках ионизирующих излучений. К паяным соединениям предъявляются требования по сохранению прочности и вакуумной плотности в течение срока работы трубки - (1000-10000) ч при эксплуатационных нагревах до 650°С.
Для соединения бериллия с корпусом трубки используют оправы из нержавеющей стали и монеля. Пайка бериллия с оправой или рамой из нержавеющей стали 12Х18Н10Т и монеля обычно выполняется в вакууме серебряными припоями - (60-92)%Ag.
В связи с дефицитностью серебра в качестве сереброзаменяющих припоев в промышленности в настоящее время широко используют сплавы на основе меди различных систем легирования (Cu-P, Cu-Mn, Cu-Sn, Cu-Ni-P и др.). Имеется необходимость применения сереброзаменяющих припоев на основе меди для пайки бериллия с нержавеющей сталью и бериллия с монелем.
Известен сплав на основе меди (Cu-Mn-Zn-Be), имеющий температуру плавления (804-871)°С, который может быть использован в качестве припоя, состав в мас.%:
(Патент США №3972712)
Недостатком этого сплава является невозможность его использования в качестве припоя при вакуумной пайке в связи с наличием цинка, имеющего высокую упругость пара.
Известен припой (Cu-Ti-Be) для пайки керамики с металлом при температурах (910-950)°С, образующий вакуумноплотные соединения и имеющий следующий химический состав, в мас.%:
(Авт. св. СССР №470382)
Недостатком этого припоя являются трудность в получении из него деформированных полуфабрикатов (проволока, фольга) припоя.
Известен сплав на основе меди, предназначенный для изготовления биметаллических узлов сталь - бронза методом заливки, состав в мас.%:
(Авт. св. СССР №389159)
Недостатком этого сплава при использовании его в качестве припоя является недостаточные технологические свойства (растекание, смачивание), недостаточная вакуумная плотность и прочность паяных соединений для разнородных соединений бериллия с нержавеющей сталью и бериллия с монелем, отсутствие возможности получения деформированных полуфабрикатов (фольга, проволока) припоя.
За прототип принят припой на основе меди ПСр72, используемый в способе пайки бериллиевой фольги, преимущественно при изготовлении входных окон электровакуумных приборов, пропускающих рентгеновское излучение.
(Авт. св. СССР №538836)
Недостатками этого способа является:
1. Содержание серебра, являющегося драгоценным металлом.
2. Плохое смачивание нержавеющей стали, применяемой в качестве рам при изготовлении некоторых типов рентгеновских окон из бериллиевой фольги.
3. Неработоспособность припоя при повышенных температурах. Обычно медно-серебряные припои применяют при пайке соединений, работающих при 20°С.
Технической задачей изобретения является создание припоя на основе меди, обладающего технологичностью (смачивание, растекание) при пайке разнородных соединений бериллия с нержавеющей сталью и бериллия с монелем при температурах пайки до 950°С, обеспечивающего прочность и вакуумную плотность паяных соединений после эксплуатационных нагревов до 650°С. Припой должен обладать технологичностью при изготовлении из него деформированных полуфабрикатов (фольга, проволока).
Поставленная техническая задача достигается тем, что предложен припой на основе меди для пайки разнородных соединений бериллия с конструкционными сплавами, отличающийся тем, что он дополнительно содержит содержащий бериллий, марганец, титан, никель, железо, магний, алюминий, кремний и при следующем соотношении компонентов, в мас.%:
Медь выбрана в качестве основы припоя благодаря комплексу положительных физико-химических свойств (пластичность, немагнитность, вакуумная плотность и др.).
Бериллий, применяемый в количестве (1,65-2,0)%, снижает температуру плавления меди, образуя с ней сплав - бериллиевую бронзу. Однако этот медно-бериллиевый сплав без других компонентов не может быть использован в качестве припоя, так как растворение бериллия в меди ничем не ограничивается и ведет к образованию хрупкой β-фазы.
Уменьшение растворимости бериллия в меди достигается введением компонентов, снижающих растворимость бериллия в меди (марганца, титана, железа и кремния) в заявленных количествах и обеспечивающих сочетание высоких прочностных свойств припоя, вакуумной плотности и стабилизацию структуры припоя в процессе кристаллизации и эксплуатационных нагревов, а также деформационную способность при изготовлении из него полуфабрикатов (фольга, проволока) припоя.
Магний благодаря низкой упругости пара создает при пайке активную среду, способствует удалению устойчивой окисной пленки бериллия.
Никель образует малорастворимый бериллид никеля и уменьшает растворимость бериллия в меди, а также повышает жаропрочность припоя.
Марганец снижает температуру плавления меди, стабилизирует структуру припоя, образуя с ней ряд непрерывных твердых растворов, немагнитен.
Титан обеспечивает улучшение смачиваемости бериллия припоем и образует соединения TiBe2 и Cu3Ti, которые образуют дополнительное упрочнение, и стабилизирует структуру припоя.
Указанные соотношения железа, алюминия и кремния обеспечивают стойкость паяного соединения против образования кристаллизационных трещин при охлаждении.
Припой имеет температуру плавления (870-940)°С, температура пайки этим припоем (940-950)°С. Припой хорошо смачивает паяемые материалы в разнородных соединениях бериллия с нержавеющей сталью и бериллия с монелем. Сопротивление срезу паяных швов в разнородных нахлесточных соединениях бериллия с нержавеющей сталью 12Х18Н10Т и монелем достигает (100-120) МПа. Паяные швы, выполненные по оптимальной технологии, обладают вакуумной плотностью.
Припой хорошо деформируется прессованием на гидравлическом прессе, волочится на волочильных машинах в проволоку и прокатывается в фольгу на прокатном стане по стандартным технологиям, применяемым при изготовлении этих полуфабрикатов из бериллиевых бронз.
Примеры осуществления
Предлагаемый припой выплавлялся в вакуумной индукционной печи. Полученные слитки предлагаемого припоя деформировались на гидравлическом прессе в пруток, который волочился в проволоку диаметром 1 мм, и полосу, которая затем прокатывалась в фольгу толщиной 0,2 мм. В качестве припоя-прототипа использовался припой ПСр72 в виде слитка, фольги толщиной 0,2 мм и проволоки диаметром 1 мм, полученный с завода-изготовителя. В таблице 1 представлены составы предлагаемых припоев (примеры 1-3) и припоя-прототипа.
Пайка проводилась при нагреве в вакуумной печи. Вакуум при пайке составил не менее 3·10-5 мм рт.ст.
Определение характеристик смачиваемости и растекаемости проводилось согласно ГОСТ 20486 на пластинах толщиной 2,0 мм из бериллия ТГП-56, нержавеющей стали и монеля размером 40×40 мм.
Объем припоя во всех случаях составлял 64 мм3. Оценка растекаемости проводилась путем замера площади растекания на каждом из паяемых материалов после расплавления припоя. Критерием оценки смачиваемости являлся краевой угол смачивания, который определялся методом «лежачей капли».
Для определения прочности разнородных соединений бериллия с нержавеющей сталью и бериллия с монелем проводилась пайка плоских образцов внахлестку, с величиной нахлестки, равной 3 толщинам образца. Образцы паялись в приспособлении из нержавеющей стали. Припой в виде фольги закладывался между образцами. Технологические свойства припоев, режимы пайки образцов и свойства соединений после эксплуатационных нагревов приведены в таблице 2.
Оценка вакуумной плотности паяных соединений проводилась при пайке круглых окон из бериллия с оправой из нержавеющей стали и монеля и испытании их в приспособлении на гелиевом течеискателе ПТИ-10.
В таблице 2 представлены свойства паяных соединений бериллия с нержавеющей сталью 12Х18Н10Т и бериллия с монелем, полученные при оптимальных температурах пайки. Как видно, предлагаемый припой (примеры 1-3) отличается лучшим сочетанием технологических свойств, вакуумной плотности и прочности на срез при испытании нахлесточных соединений в сравнении с прототипом.
Припой хорошо смачивает разнородные материалы - бериллий, нержавеющую сталь и монель при температурах пайки. Сопротивление срезу паяных швов в разнородных нахлесточных соединениях бериллия с нержавеющей сталью 12Х18Н10Т и монелем достигает (100-120) МПа. Паяные швы обладают вакуумной плотностью. Припой хорошо деформируется в фольгу и проволоку.
Таким образом, применение предлагаемого припоя позволит заменить серебряные припои в конструкциях, использующих соединение бериллия с нержавеющей сталью и бериллия с монелем, снизить брак при пайке и обеспечить значительный экономический эффект при изготовлении паяных рентгеновских окон.
Составы предлагаемых припоев и припоя-прототипа в мас.%
название | год | авторы | номер документа |
---|---|---|---|
Способ изготовления вакуумплотного бериллиевого выпускного окна | 2021 |
|
RU2760320C1 |
Способ изготовления вакуумноплотного выпускного бериллиевого окна | 2023 |
|
RU2815735C1 |
Способ получения быстрозакаленного безбористого припоя на основе никеля для пайки изделий из коррозионностойких сталей, припой, паяное соединение и способ его получения | 2015 |
|
RU2625924C2 |
ПРИПОЙ ДЛЯ ПАЙКИ АЛЮМИНИЯ И ЕГО СПЛАВОВ | 2014 |
|
RU2584357C1 |
АМОРФНЫЙ ЛЕНТОЧНЫЙ ПРИПОЙ НА ОСНОВЕ МЕДИ | 2011 |
|
RU2464143C1 |
ПРИПОЙ ДЛЯ ПАЙКИ АЛЮМИНИЯ И ЕГО СПЛАВОВ | 2014 |
|
RU2585598C1 |
ПРИПОЙ ДЛЯ ПАЙКИ АЛЮМИНИЯ И ЕГО СПЛАВОВ | 2014 |
|
RU2596535C2 |
ПРИПОЙ НА ОСНОВЕ НИКЕЛЯ | 2004 |
|
RU2278011C1 |
СПОСОБ ПОЛУЧЕНИЯ ГЕРМЕТИЧНОГО МЕТАЛЛОКЕРАМИЧЕСКОГО СПАЯ С ПОМОЩЬЮ КОМПЕНСИРУЮЩЕГО ЭЛЕМЕНТА | 2010 |
|
RU2455263C2 |
Гетерогенный активный припой для пайки металлокерамических и керамических вакуумно-плотных соединений | 2019 |
|
RU2717766C1 |
Изобретение может найти применение при пайке разнородных соединений бериллия с конструкционными сплавами - нержавеющей сталью и монелем, используемых в качестве оправ при изготовлении рентгеновских окон. Припой содержит ингредиенты в следующем соотношении, в мас.%: бериллий 1,65-2,0, марганец 0,5-0,7, титан 0,3-0,5, никель 0,2-0,4, железо 0,15-0,25, магний 0,1-0,2, алюминий 0,1-0,15, кремний 0,1-0,15, медь - остальное. Припой обеспечивает прочность и вакуумную плотность паяных соединений при эксплуатационных нагревах до 650°С и обладает технологичностью при изготовлении из него деформированных полуфабрикатов в виде фольги, проволоки. 2 табл.
Припой на основе меди для пайки разнородных соединений бериллия с конструкционными сплавами, отличающийся тем, что он дополнительно содержит бериллий, марганец, титан, железо, алюминий, кремний, магний, никель при следующем соотношении компонентов, мас.%
Способ пайки бериллиевой фольги | 1975 |
|
SU538836A1 |
Припой для пайки молибдена со сталью | 1961 |
|
SU147896A1 |
СПЛАВ НА ОСНОВЕ МЕДИ | 0 |
|
SU389159A1 |
Способ бесфлюсовой пайки бериллия | 1978 |
|
SU729009A1 |
ПРИПОЙ ДЛЯ ПАЙКИ ИЗДЕЛИЙ ЭЛЕКТРОННОЙ ТЕХНИКИ | 1993 |
|
RU2047449C1 |
US 3105294 A, 01.10.1963 | |||
JP 62282798 A, 08.12.1987. |
Авторы
Даты
2006-07-20—Публикация
2004-12-21—Подача