Область техники, к которой относится изобретение
Изобретение относится к синтетическим кристаллическим материалам на основе оксида циркония, и, в частности, касается мезопористого кристаллического материала на основе оксида циркония с регулируемыми кислотно-основными свойствами и способа его получения. Предложенный мезопористый материал на основе оксида циркония, модифицированный сульфат ионами, может быть использован при переработке нефтяного сырья, например, в качестве кислотного катализатора процессов алкилирования ароматических соединений. Благодаря стабильности в широком диапазоне рН предложенный мезопористый материал может быть использован в качестве сорбента и неподвижной фазы для хроматографического разделения химических веществ. Еще одной областью применения модифицированного мезопористого материала, соответствующего изобретению, является использование его в качестве анода в твердых топливных элементах.
Уровень техники
В настоящее время внимание исследователей сосредоточено на разработке способов получения материалов с мезопористой структурой, которые превосходят по своим характеристикам материалы с микропористой структурой.
Так, высокая термическая стабильность мезопористой структуры является важным свойством для использования материала в качестве компонента электродов топливных элементов, а также в качестве компонента катализатора, способного выдерживать многократные циклы регенерации, например удаление кокса прокаливанием на воздухе.
Известен мезопористый материал на основе оксида циркония и способ его получения, в котором в качестве матрицы используют блок-сополимеры на основе полиэтиленоксид (ПЭО)-полипропилен оксидной (ППО) композиции [(ПЭО)m(ППО)70(ПЭО)m], где m=20-106. Способ представляет собой одностадийный синтез, проводимый в этанольном растворе при температуре 40°С, и не предусматривает регулирование кислотно-основных свойств материала (B.F. Chmelka, E. Danielson, G.D.Stucky, патентная заявка США №2004144726). Образующийся оксид циркония после прокаливания на воздухе при 400°С имеет удельную поверхность около 150 м2/г и размер пор 58 Å. Недостатком данного материала является незначительная удельная поверхность и широкое распределение пор по радиусам вследствие неоднородности матрицы.
Известен способ получения мезопористого материала на основе оксида циркония с использованием бромида алкилтриметиламмония СnН2n+1+(СН3)3HBr (Z.-Y. Yuan, A. Vantomme, A. Leonard и B.-L. Su, Chem. Commun., 2003, 1558). Способ представляет собой одностадийное гидротермальное осаждение мезопористого материала из Zr(ОС3Н7)4 в присутствии бромида гексадецилтриметиламмония С16Н33(СН3)3NBr при 60°С в течение 48 ч. Удаление матрицы проводят экстракцией этанолом. После удаления матрицы материал высушивают при 60°С в вакууме.
Удельная поверхность материала составляет 518-670 м2/г при радиусе пор 18-25 Å. Однако материал, полученный по данному методу, утрачивает свою мезопористую структуру после прокаливания на воздухе при 500°С.
Таким образом, известные одностадийные способы синтеза мезопористого оксида циркония не позволяют получить структуру с развитой поверхностью, устойчивую при высоких температурах прокаливания на воздухе.
Известен материал на основе оксида циркония и способ его получения двухстадийным методом (W.M.H. Sachtler, Y.Y. Huang, Патент США №5786294). На первой стадии проводят гидротермальную кристаллизацию смеси Zr(OPr i)4 и С16Н33NH2 в растворе вода-этанол-ацетилацетон, отделяют твердый материал центрифугированием и удаляют матрицу экстракцией этанолом. На второй стадии проводят стабилизацию водным раствором серной кислоты и прокаливание на воздухе при температурах 100-500°С. На рентгенограмме продукта наблюдается рефлекс, соответствующий межплоскостному расстоянию в 36-40 Å, а удельная поверхность составляет 91-347 м2/г, в зависимости от температуры прокаливания на воздухе, что указывает на недостаточную стабильность мезопористой структуры в процессе термообработки.
Наиболее близким к предложенному материалу является материал на основе оксида циркония, имеющий удельную поверхность более 390 м2/г и удельный суммарный объем пор более 0,218 см3/г (В.Н.Романников, В.Б.Фенелонов, А.Ю.Деревянкин, Патент РФ №2129989). Способ приготовления материала представляет собой двухстадийный синтез. На первой стадии формируют мезопористую фазу в гидротермальных условиях при осаждении смеси Zr(SO4)2 и Zr(OH)4 в присутствии катионного сурфактанта С16Н33(СН3)3NBr при мольном соотношении 1,0ZrO2:(0,9-1,5)SO3:(0,1-0,2)С16Н33(СН3)3NBr:(80,0-100,0)Н2O. На второй стадии проводят стабилизацию в щелочном растворе, содержащем соединения кремния, бора, алюминия, фосфора в мольных соотношениях 1,0 ZrO2:(0,7-1,0)М2O-хЭОm: (100,0-200,0)Н2O, где М - катион щелочного металла или тетраалкиламмония, Э - элемент IV-VI группы, х - величина не более 10. Способ позволяет синтезировать оксидные системы с удельной поверхностью 400-550 м2/г, устойчивые при прокаливании на воздухе при 550-600°С. Недостатком данного способа является то, что он не предусматривает регулирование кислотно-основных свойств материала, а введение больших количеств стабилизатора (мольные соотношения 1,0ZrO2:(1,0-2,0)хЭОm) может приводить к понижению кислотности вследствие блокирования кислотных центров. Кроме того, в известном способе используются исходные вещества, доступность которых ограничена (Zr(SO4)2, С16Н33(СН3)3NBr) в связи с их высокой стоимостью.
Раскрытие изобретения
Предложенное изобретение направлено на создание структурированного мезопористого материала на основе оксида циркония с пониженным содержанием стабилизаторов, повышенной устойчивостью при высоких температурах, с регулируемыми кислотно-основными свойствами и высокой удельной поверхностью и объемом пор, а также способа его получения, исходя из выпускаемых в промышленности крупнотоннажных продуктов.
В соответствии с этим, объектом предложенного изобретения является мезопористый материал на основе оксида циркония, имеющий состав SO4 2-/ZrO2-ЭОx, где Э = элемент III или IV группы Периодической таблицы Д.И.Менделеева, х=1,5 или 2, содержание SO4 составляет 0,1-10 мас.%, мольное соотношение ZrO2,: ЭОх=1:(0,4-1,0), и имеющий удельную поверхность 300-800 м2/г с суммарным объемом пор 0,3-0,8 см3/г.
Другим объектом изобретения является способ получения мезопористого материала на основе оксида циркония, включающий гидротермальную кристаллизацию соединений циркония в присутствии сурфактанта с получением мезопористой фазы, ее стабилизацию с получением мезопористой структуры и прокаливание, при этом в качестве соединений циркония используют гидроксид циркония или цирконила, стабилизацию мезопористой структуры осуществляют посредством введения элементов III или IV группы, а после стабилизации, при необходимости, проводят регулирование кислотности.
В частном случае осуществления изобретения гидроксид циркония или цирконила предпочтительно получают осаждением из их соответствующих солей.
В частном случае осуществления изобретения гидроксид циркония или цирконила осаждают водным раствором аммиака.
В другом частном случае осуществления изобретения гидротермальную кристаллизацию предпочтительно осуществляют переосаждением гидроксида циркония или цирконила из композиции ZrOa(ОН)b-Н2SO4-Н2O, где а=0-2, b=0-4.
Регулирование кислотности проводят, в частности, обработкой водными растворами кислот и/или их солей, причем в качестве солей используют, например, аммониевые соли.
Краткое описание чертежей
На Фиг.1 представлена рентгенограмма соответствующего предлагаемому изобретению мезопористого материала на основе оксида циркония, прокаленного на воздухе при 550°.
На Фиг.2 представлено распределение пор по размерам для соответствующего предлагаемому изобретению мезопористого материала на основе оксида циркония, прокаленного на воздухе при 550°, полученное по данным адсорбционных измерений.
Осуществление изобретения
Способ получения мезопористого материала, соответствующего изобретению, включает на первой стадии приготовление композиции, состоящей из гидратированного оксида циркония, сульфат анионов и воды, посредством осаждения гидратированной оксидной фазы из растворимых солей циркония или цирконила, последующего растворения в концентрированной серной кислоте и разбавления водой. Полученную композицию подвергают повторному осаждению в гидротермальных условиях в присутствии катионных сурфактантов, используемых в качестве матрицы. При этом происходит формирование мезопористой структуры. На второй стадии осуществляют стабилизацию мезопористой структуры обработкой соединениями элементов III и IV группы, взятых в определенных отношениях к мезопористой кристаллической фазе. На третьей стадии, при необходимости, производят регулирование кислотно-основных свойств мезопористого материала дополнительной обработкой кислотами или их солями и прокаливание полученных материалов на воздухе.
Приготовление мезопористого материала по способу, предложенному в данном изобретении, проводят следующим образом.
На первой стадии раствор соли циркония или цирконила (ZrOCl2, ZrO(NO3)2, ZrCl4, Zr(SO4)2) обрабатывают водным раствором аммиака в мольном соотношении 1,0Zr:3,5-4,5NH3. Полученный осадок отделяют, промывают водой, а затем обрабатывают серной кислотой в мольном соотношении 1,0Zr:(1,5-2,5)SO4 2- до полного растворения осадка. К полученному раствору добавляют водный раствор катионного сурфактанта галогенида алкилтриметиламмония (СnН2n+1(СН3)NX, где n=10-20, Х=Cl, Br) в мольном соотношении 1,0Zr:(0,2-0,5)СnН2n+1(СН3)3NX:(400,0-600,0)Н2O и выдерживают при температуре 40-120°С в течение 20-100 часов. По окончании кристаллизации полученный мезопористый кристаллический материал на основе оксида циркония, содержащий органическую матрицу, фильтруют, промывают и сушат на воздухе.
На второй стадии проводят стабилизацию мезопористой кристаллической фазы оксида циркония. Для этого смесь, содержащую исходную форму мезопористой кристаллической фазы, композицию R4NOH-SiO2 (где R=Me, Et) и воду в мольном соотношении 1,0ZrO2:(0,4-1,0)SiO2:(0,1-1,0) R4NOH: (100,0-300,0)H2O, выдерживают при температуре 40-100°С в течение 4-60 ч. По окончании кристаллизации стабилизированную форму мезопористой кристаллической фазы оксида циркония фильтруют, промывают и сушат.
На третьей стадии полученный материал обрабатывают водным раствором кислот НnА (серной, вольфрамфосфорной и др.) или их аммониевых солей при мольном соотношении 1,0Zr:(0,01-0,1)An-, где n=1, 2, 3 или 4. Материал сушат и прокаливают на воздухе при температуре 500-800°С в течение 4-8 часов.
Предложенный материал на основе мезопористого оксида циркония, полученный способом, соответствующим изобретению, существенно превосходит по своим характеристикам известные материалы.
В предпочтительном варианте осуществления изобретения химический состав в мольном соотношении составляет 1,0ZrO2:(0,4-1,0)SiO2:(0,01-0,1)SO4 2-, при этом содержание стабилизатора в мезопористом материале не превышает мольного соотношения 1,0ZrO2:0,6ЭОx, где х=1,5 или 2.
Рентгенограмму материала характеризует наличие рефлекса, соответствующего межплоскостному расстоянию 18-20 Å (Фиг.1), указывающего на формирование структурированной мезопористой фазы. Данный рефлекс сохраняется после прокаливания на воздухе при 550-600°С, что свидетельствует о сохранности мезопористой структуры. Средний диаметр пор предложенного материала составляет 25-30 Å (Фиг.2).
Осуществление предложенного способа получения мезопористого материала на основе оксида циркония иллюстрируется Примерами 1-8. Условия приготовления материала сведены в Таблице 1. Физико-химические характеристики материалов на основе оксида циркония, полученных после прокаливания на воздухе при 550°С, приготовленных в соответствии с предложенным способом и способами, известных из Патента РФ №2129989, сведены в Таблице 2.
Условия приготовления мезопористых материалов
Физико-химические характеристики мезопористых материалов после прокаливания при 550°С
Измерение физико-химических характеристик целевых продуктов проводили следующим образом.
Удельная поверхность и объем пор были измерены на адсорбционном порозиметре Mircomertics ASAP 2020 методом адсорбции азота. Удельная поверхность была рассчитана по модели BET (Брунауэр-Эммет-Тэллер) при относительном парциальном давлении Р/Р0=0,2. Общий объем пор и распределение пор по радиусам рассчитан по адсорбционной кривой с использованием модели BJH (Баррет-Джойнер-Халенда) при относительном парциальном давлении Р/Р0=0,99.
Рентгенограммы образцов мезопористых материалов были сделаны на приборе X'Pert PRO PANAnalytical в монохроматизированном CuKα излучении. Расчет значений межплоскостных расстояний d проведен по формуле d=λ/2sinθ, где θ - угол максимума рефлекса.
Пример 1.
Синтез мезопористого материала проводят в два этапа.
На первом этапе 10,12 г (0,03 моль) хлорида цирконила (ZrOCl2·8H2O) растворяют в 60 г воды. Полученный раствор обрабатывают 4,4 мл 25%-ного водного раствора NH4OH до полного осаждения гидратированной оксидной фазы. Осадок отделяют фильтрованием, промывают на фильтре водой и затем обрабатывают 6,16 г (0,06 моль) концентрированной серной кислоты до полного растворения гидратированной оксидной фазы. В полученную смесь добавляют 37,1 г воды. Полученный раствор по каплям при интенсивном перемешивании в течение 30 мин приливают к раствору сурфактанта, содержащего 6,13 г (0,016 моль) бромида гексадецилтриметиламмония в 175 г воды. Смесь помещают в автоклав и выдерживают при температуре 95°С в течение 48 часов. Продукт остужают до комнатной температуры, отделяют фильтрованием, промывают на фильтре водой и сушат при комнатной температуре в течение 48 ч.
На втором этапе проводят стабилизацию мезопористой фазы, 10 г сухого продукта, полученного на первом этапе, суспендируют в 50 г воды. К полученной суспензии при перемешивании добавляют раствор, содержащий 2,93 г (0,045 моль) оксида кремния, 32,96 мл 20%-ного раствора (0,045 моль) гидроксида тетраэтиламмония в воде и 15 г воды. Мольное соотношение Zr:Si составляет 1,7. Смесь помещают в автоклав и выдерживают при температуре 90°С в течение 30 часов. Продукт остужают до комнатной температуры, отделяют фильтрованием, промывают на фильтре водой и сушат при комнатной температуре в течение 48 ч. Продукт прокаливают в муфельной печи в токе воздуха при температуре 550°С в течение 6 ч.
Свойства полученного материала представлены в таблице 2.
Пример 2.
Синтез проводят по Примеру 1. На втором этапе мольное соотношение Zr:Si составляет 3. Время стабилизации 30 часов. Свойства полученного материала представлены в таблице 2.
Пример 3.
Синтез проводят по Примеру 1. На втором этапе мольное соотношение Zr:Si составляет 1,7. Время стабилизации 6 часов. Свойства полученного материала представлены в таблице 2.
Пример 4.
Синтез проводят по Примеру 1. На втором этапе мольное соотношение Zr:Si составляет 1,7. Время стабилизации 13 часов. Свойства полученного материала представлены в таблице 2.
Пример 5.
Синтез мезопористого материала проводят в три этапа.
Первый и второй этапы проводят по Примеру 1.
На третьем этапе осуществляют регулирование кислотных свойств. 10 г сухого продукта, полученного на втором этапе, обрабатывают раствором 0,5 г (0,005 моль) серной кислоты в 50 г воды. Смесь выдерживают при комнатной температуре в течение 1 ч, а затем упаривают и сушат при 100°С в течение 2 ч. Продукт прокаливают в муфельной печи в токе воздуха при температуре 550°С в течение 6 ч. Свойства полученного материала представлены в таблице 2, а также на фиг.1 и фиг.2.
Пример 6.
Синтез проводят по Примеру 5. На втором этапе мольное соотношение Zr:Si составляет 1,7. Время стабилизации 30 часов. Регулирование кислотности осуществляют раствором 0,66 г (0,005 моль) сульфата аммония в 50 г воды. Свойства полученного материала представлены в таблице 2.
Пример 7.
На первом этапе в качестве исходного соединения берут сульфат циркония, 15 г (0,042 моль) Zr(SO4)2·4H2O растворяют в 50 г воды. Полученный раствор по каплям при интенсивном перемешивании в течение 30 мин приливают к раствору 21,55 мл 25%-ного хлорида гексадецилтриметиламмония в 159 мл воды. Смесь выдерживают при температуре 95°С в течение 48 часов. Продукт остужают до комнатной температуры, отделяют фильтрованием, промывают на фильтре водой и сушат при комнатной температуре в течение 48 ч.
Второй и третий этап проводят по Примеру 5. Свойства полученного материала представлены в таблице 2.
Пример 8.
Синтез мезопористого материала проводят в два этапа.
Первый этап проводят по Примеру 1.
На втором этапе осуществляют регулирование кислотных свойств. 10 г сухого продукта, полученного на первом этапе, обрабатывают раствором 0,66 г (0,005 моль) сульфата аммония в 50 г воды. Смесь выдерживают при комнатной температуре в течение 1 ч, а затем упаривают и сушат при 100°С в течение 2 ч. Продукт прокаливают в муфельной печи в токе воздуха при температуре 550°С в течение 6 ч. Свойства полученного материала представлены в таблице 2.
Дополнительные примеры, иллюстрирующие разные мольные соотношения ZrSi
В дополнение к вышеприведенным примерам (см. Таблицу 1 и Таблицу 2) можно привести следующие данные.
Условия приготовления мезопористых материалов
Физико-химические характеристики мезопористых материалов после прокаливания при 550°С
Пример 9.
Синтез проводят по Примеру 1. На втором этапе мольное соотношение Zr:Si составляет 1,3. Время стабилизации 30 часов. Свойства полученного материала представлены в таблице 2.
Пример 10.
Синтез проводят по Примеру 1. На втором этапе мольное соотношение Zr:Si составляет 1. Время стабилизации 30 часов. Свойства полученного материала представлены в таблице 2.
Пример 11.
Синтез проводят по Примеру 1. На втором этапе мольное соотношение Zr:Si составляет 2,5. Время стабилизации 30 часов. Свойства полученного материала представлены в таблице 2.
Примеры, иллюстрирующие использование Al для стабилизации
На второй стадии проводят стабилизацию мезопористой кристаллической фазы оксида циркония. Для этого смесь, содержащую исходную форму мезопористой кристаллической фазы, композицию R4NOH-Al2O3 (где R=Me, Et) и воду в мольном соотношении 1,0ZrO2:(0,4-1,0) Al2O3:(0,1-1,0) R4NOH:(100,0-300,0)H2O, выдерживают при температуре 40-100°С в течение 4-60 ч. По окончании кристаллизации стабилизированную форму мезопористой кристаллической фазы оксида циркония фильтруют, промывают и сушат.
В предпочтительном варианте осуществления изобретения химический состав в мольном соотношении составляет 1,0ZrO2:(0,4-1,0) Al2О3:(0,01-0,1)SO4 2-, при этом содержание стабилизатора в мезопористом материале не превышает мольного соотношения 1,0ZrO2:0,6ЭОx, где х=1,5 или 2.
В дополнение к существующим примерам, приведенным в Таблицах 1-4 можно привести следующие данные
Условия приготовления мезопористых материалов
Физико-химические характеристики мезопористых материалов после прокаливания при 550°С
Пример 12.
Синтез проводят по Примеру 1. На втором этапе проводят стабилизацию мезопористой фазы соединениями алюминия. 10 г сухого продукта, полученного на первом этапе, суспендируют в 50 г воды. К полученной суспензии при перемешивании добавляют раствор, содержащий 4,14 г (0,040 моль) гидратированной окиси алюминия, 28,9 мл 20%-ного раствора (0,045 моль) гидроксида тетраэтиламмония в воде и 30 г воды. Мольное соотношение Zr:Al составляет 2. Смесь помещают в автоклав и выдерживают при температуре 90°С в течение 10 часов. Продукт остужают до комнатной температуры, отделяют фильтрованием, промывают на фильтре водой и сушат при комнатной температуре в течение 48 ч. Продукт прокаливают в муфельной печи в токе воздуха при температуре 550°С в течение 6 ч. Свойства полученного материала представлены в таблице 2.
Пример 13.
Синтез проводят по Примеру 3*. На втором этапе мольное соотношение Zr:Al составляет 1. Время стабилизации 10 часов. Свойства полученного материала представлены в таблице 2.
Промышленная применимость
Материал, соответствующий предложенному изобретению, представляет большой интерес для использования в качестве компонента кислотных катализаторов, сорбентов и неподвижных фаз в хроматографии, а также компонента топливных элементов. Интерес определяется особенностями кристаллической структуры предложенного материала, сочетающей широкие поры (свыше 20 Å) унифицированные по размерам, большие величины удельной поверхности и объема пор, а также возможность формирования специфических активных центров на внутренней поверхности пор.
название | год | авторы | номер документа |
---|---|---|---|
КАТАЛИЗАТОР ПРЕВРАЩЕНИЯ УГЛЕВОДОРОДОВ И СПОСОБ ЕГО ПОЛУЧЕНИЯ | 2005 |
|
RU2276621C1 |
СПОСОБ ПОЛУЧЕНИЯ НОСИТЕЛЯ КАТАЛИЗАТОРА ПРЕВРАЩЕНИЙ УГЛЕВОДОРОДНОГО СЫРЬЯ НА ОСНОВЕ МЕЗОПОРИСТОГО МАТЕРИАЛА | 2015 |
|
RU2584951C1 |
МАТЕРИАЛ НА ОСНОВЕ ДИОКСИДА ЦИРКОНИЯ И СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ | 1997 |
|
RU2129989C1 |
ОДНОСТАДИЙНЫЙ СПОСОБ ПОЛУЧЕНИЯ БУТАДИЕНА | 2017 |
|
RU2656602C1 |
КАТАЛИЗАТОР АРОМАТИЗАЦИИ МЕТАНА, СПОСОБ ЕГО ПОЛУЧЕНИЯ И СПОСОБ КОНВЕРСИИ МЕТАНА С ПОЛУЧЕНИЕМ АРОМАТИЧЕСКИХ УГЛЕВОДОРОДОВ | 2015 |
|
RU2585289C1 |
Способ получения иерархического железосодержащего силикалита с возможностью регулирования соотношения микромезопор для процесса полного окисления фенола пероксидом водорода | 2022 |
|
RU2803369C1 |
СПОСОБ КОНВЕРСИИ УГЛЕВОДОРОДОВ, КАТАЛИЗАТОР ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ С МИКРО-МЕЗОПОРИСТОЙ СТРУКТУРОЙ И СПОСОБ ПРИГОТОВЛЕНИЯ КАТАЛИЗАТОРА | 2005 |
|
RU2288034C1 |
СПОСОБ ПОЛУЧЕНИЯ МЕЗОПОРИСТЫХ АМОРФНЫХ СМЕШАННЫХ ЭЛЕМЕНТОСИЛИКАТОВ | 2009 |
|
RU2420455C1 |
СПОСОБ ПРИГОТОВЛЕНИЯ ЦЕОЛИТА СТРУКТУРЫ МТТ | 2019 |
|
RU2740447C1 |
Катализатор риформинга бензиновых фракций и способ его получения | 2024 |
|
RU2826623C1 |
Предложен мезопористый материал на основе оксида циркония, имеющий состав SO4 2-/ZrO2-ЭОх, где Э = элемент III или IV группы Периодической таблицы Д.И.Менделеева, х=1,5 или 2, содержание SO4 2- составляет 0,1-10 мас.%, мольное соотношение ZrO2:ЭОх=1:(0,4-1,0), и имеющий удельную поверхность 300-800 м2/г с суммарным объемом пор 0,3-0,8 см3/г. Способ получения заключается в приготовлении композиции, состоящей из гидратированного оксида циркония, сульфат анионов и воды, посредством осаждения гидратированной оксидной фазы из растворимых солей циркония или цирконила и последующего гидротермального переосаждения в присутствии катионных сурфактантов с формированием мезопористой структуры, после чего осуществляют стабилизацию мезопористой структуры обработкой соединениями элементов III или IV группы, взятых в определенных отношениях к мезопористой кристаллической фазе. Изобретение позволяет получить материал с регулируемыми кислотно-основными свойствами, высокой удельной поверхностью, повышенной термостойкостью. 2 н. и 5 з.п. ф-лы, 2 ил., 6 табл.
МАТЕРИАЛ НА ОСНОВЕ ДИОКСИДА ЦИРКОНИЯ И СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ | 1997 |
|
RU2129989C1 |
НЕОРГАНИЧЕСКИЙ СФЕРОГРАНУЛИРОВАННЫЙ ПОРИСТЫЙ СОРБЕНТ НА ОСНОВЕ ГИДРОКСИДА ЦИРКОНИЯ И СПОСОБ ЕГО ПОЛУЧЕНИЯ | 1994 |
|
RU2064825C1 |
СПОСОБ ПОЛУЧЕНИЯ СФЕРОГРАНУЛИРОВАННЫХ МАТЕРИАЛОВ НА ОСНОВЕ ГИДРОКСИДА ИЛИ ОКСИДА ЦИРКОНИЯ | 2003 |
|
RU2235686C1 |
US 6716378 A, 06.04.2004 | |||
US 6814995 A, 09.11.2004 | |||
US 6251280 A, 26.06.2004. |
Авторы
Даты
2006-07-27—Публикация
2005-01-24—Подача