МЕТАЛЛИЧЕСКОЕ ИЗДЕЛИЕ С ВЫПОЛНЕННОЙ ЗА ОДНО ЦЕЛОЕ КОНЦЕВОЙ ПОЛОСОЙ ПОД СЖАТИЕМ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ Российский патент 2006 года по МПК F01D5/14 B21K3/04 

Описание патента на изобретение RU2281402C2

Настоящее изобретение относится к металлическому изделию, имеющему выполненную за одно концевую или кромочную часть, подверженную такому повреждению, как растрескивание. В частности, изобретение относится к металлическому изделию, например лопаточному элементу газотурбинного двигателя, выполненному из металлического сплава и содержащему кромку, подверженную отрыву или растрескиванию во время работы и распространению такого повреждения от кромки в нижележащий материал.

Вырабатывающие энергию устройства, такие как турбинные двигатели, содержат лопаточные элементы, например, лопасти и лопатки, имеющие свободную концевую часть или кромку, находящуюся рядом с другим компонентом при их относительном движении или вращении. Примерами таких элементов могут быть вращающиеся лопатки компрессора и турбины, имеющие аэродинамический профиль, кромка которого расположена напротив стационарного бандажа или уплотнения через относительно узкий зазор. Данный зазор выполняется таким образом, чтобы ограничить утечку через него рабочей среды, такой как воздух и/или продукты сгорания.

Как хорошо известно и широко описано в области турбомашин, такой лопаточный элемент может работать в циклическом режиме с относительно высокой скоростью оборотов и иногда при относительно высоких температурах. В результате, помимо теплового расширения и сжатия элемента, в кромочной части лопаточных элементов возникают локальные высокие растягивающие и вибрационные напряжения. Эти напряжения могут развиваться до такой степени, которая может привести к отрыву кромки лопатки или возникновению в ней трещин, которые распространяются в прилежащее цельное тело лопаточного элемента. Трение между этими взаимно подвижными элементами может усиливать развитие трещин и отрыв кромки. Примеры таких условий описаны, например, в патентах США 5620307 (Mannava и др., 15 апреля 1997 г.) и 5826453 (Prevey, III, 27 октября 1998 г.).

В обоих патентах описаны способы и устройства, создающие остаточное сжимающее напряжение в поверхностной области или слое изделия, проходящее внутрь изделия от обработанной поверхности. В патенте Mannava и др. такую область остаточного сжимающего напряжения создают путем упрочнения методом лазерного удара, который распространяет напряжение от упрочненной лазерным ударом поверхности в аэродинамический профиль. В патенте Prevey, III, используется операция обкатки поверхности методом низкопластической обкатки. Это создает сжимающее напряжение в поверхностном слое на поверхности элементов, например, на глубину менее чем около 0,05 дюйма (1,27 мм), как показывают данные на чертежах, с ограничением холодной обработки до менее, чем около 3,5% по причинам, описанным Prevey, III.

Согласно одному аспекту настоящего изобретения создано изделие, выполненное из металлического материала, содержащее тело и концевую часть, выполненную заодно с телом, причем концевая часть содержит полосу из металлического материала по существу по всему поперечному сечению концевой части, выполненную заодно с телом и проходящую внутрь него, при этом полоса находится под более высоким сжимающим напряжением, чем тело.

Одним из примеров такого изделия является лопаточный элемент, выполненный из металлического сплава и содержащий аэродинамический профиль с выполненной заодно кромкой, имеющей полосу со сжимающим напряжением. Полоса проходит внутрь аэродинамического профиля на глубину, выбранную опытным путем достаточной, чтобы выдержать эксплуатационные повреждения.

Предпочтительно, в изделии в виде лопаточного элемента тело является аэродинамическим профилем лопаточного элемента, а концевая часть является кромочной частью аэродинамического профиля.

Наиболее предпочтительно, чтобы металлический материал являлся сплавом на основе, по меньшей мере, одного элемента, выбранного из группы, включающей Ti, Fe, Ni и Со, а полоса проходила радиально в аэродинамический профиль на глубину, меньшую, чем то положение, при котором потребуется избыточная опасная величина остаточного растягивающего напряжения в аэродинамическом профиле, необходимая для компенсации сжимающего напряжения в полосе. Как вариант, упомянутое положение составляет больше чем примерно 10% длины пролета аэродинамического профиля, а сжимающее напряжение находится в диапазоне приблизительно от 10 тысяч фунтов на квадратный дюйм (703 кг/см2) до предела упругости металлического материала. Дополнительно, сжимающее напряжение может находиться в интервале приблизительно от 50 до 150 тысяч фунтов на квадратный дюйм (3515-10547 кг/см2).

Предпочтительно, изделие выполнено в виде лопаточного элемента газотурбинного двигателя с телом в форме аэродинамического профиля, имеющего переднюю и заднюю кромки, нагнетательную и всасывающую стороны, а концевая часть является кромочной частью аэродинамического профиля, расположена радиально снаружи и проходит между ними, при этом полоса расположена радиально снаружи кромочной части.

Преимущественно, металлический материал является сплавом на основе, по меньшей мере, одного элемента, выбранного из группы, включающей Ti, Fe, Ni и Со, и полоса проходит в аэродинамический профиль на глубину, меньшую, чем то положение, при котором потребуется избыточная опасная величина остаточного растягивающего напряжения в аэродинамическом профиле, необходимая для компенсации сжимающего напряжения в полосе.

Предпочтительно, упомянутое положение составляет более чем примерно 10% длины пролета аэродинамического профиля.

Преимущественно, сжимающее напряжение находится в диапазоне приблизительно от 10 тысяч фунтов на квадратный дюйм (703 кг/см2) до приблизительно предела упругости металлического материала. При этом сжимающее напряжение может находиться в диапазоне приблизительно от 50-150 тысяч фунтов на квадратный дюйм (3515-10547 кг/см2).

Согласно другому аспекту настоящего изобретения создан способ изготовления изделия заключающийся в том, что выбирают глубину полосы в концевой части и затем осуществляют деформацию валками на концевой части до глубины полосы в концевой части до тех пор, пока не будет достигнуто сжимающее напряжение практически по всему поперечному сечению концевой части.

Преимущественно, концевая часть является кромочной частью аэродинамического профиля и для изготовления аэродинамического профиля лопаточного элемента выбирают глубину полосы меньше, чем то положение, в котором потребуется избыточная опасная величина остаточного растягивающего напряжения в аэродинамическом профиле, необходимая для компенсации сжимающего напряжения в полосе.

Предпочтительно, упомянутое положение составляет более чем примерно 10% длины пролета аэродинамического профиля.

Предпочтительно, при изготовлении аэродинамического профиля лопаточного элемента металлический материал является сплавом на основе, по меньшей мере, одного элемента, выбранного из группы, включающей Ti, Fe, Ni и Со, и сжимающее напряжение находится в диапазоне приблизительно от 10 тысяч фунтов на квадратный дюйм (703 кг/см2) до приблизительно предела упругости металлического материала.

Наиболее предпочтительно, чтобы сжимающее напряжение находилось в диапазоне приблизительно от 50 до 150 тысяч фунтов на квадратный дюйм (3515-10547 кг/см2).

Также создан способ изготовления указанного выше изделия, заключающийся в том, что выбирают глубину полосы в концевой части и затем осуществляют деформацию валками на концевой части до глубины в концевой части до тех пор, пока не будет достигнуто сжимающее напряжение практически по всему поперечному сечению концевой части. Концевая часть является кромочной частью аэродинамического профиля и для изготовления аэродинамического профиля лопаточного элемента выбирают глубину полосы путем осмотра повреждений аэродинамического профиля лопаточного элемента за время работы и обеспечения достаточной глубины, чтобы противостоять эксплуатационному повреждению. Глубину выбирают меньше, чем то положение, в котором потребуется избыточная опасная величина остаточного растягивающего напряжения в аэродинамическом профиле, необходимая для компенсации сжимающего напряжения в полосе, как измерено, по меньшей мере, в одном испытанном вибрационном режиме, свойственном для данного аэродинамического профиля. Причем упомянутое положение составляет более чем примерно 10% длины пролета аэродинамического профиля.

Согласно изобретению при изготовлении аэродинамического профиля лопаточного элемента металлический материал является сплавом на основе, по меньшей мере, одного элемента, выбранного из группы, включающей Ti, Fe, Ni и Со, и сжимающее напряжение находится в диапазоне приблизительно от 10 тысяч фунтов на квадратный дюйм (703 кг/см2) до приблизительно предела упругости металлического материала. Более предпочтительно, сжимающее напряжение находится в диапазоне приблизительно 50-150 тысяч фунтов на квадратный дюйм (3515-10547 кг/см2).

На чертеже схематически показан общий вид лопатки компрессора газотурбинного двигателя, содержащей аэродинамический профиль с полосой под сжатием на кромке аэродинамического профиля, согласно варианту изобретения.

Лопатки турбомашин испытывают вибрации, которые могут приводить к возникновению трещин и отрыву поверхностей лопаток. Такие поверхности включают кромочные части деталей с аэродинамическим профилем, такие как передняя кромка, задняя кромка и рабочая кромка профиля. Вероятность возникновения трещин и их распространения в лопатку, которые могут привести к повреждению, можно уменьшить путем повышения усталостной прочности материала, из которого выполнена лопатка. Радиальные наружные кромки вращающихся лопаток подвержены описанному выше типу эксплуатационного повреждения не только из-за рабочих условий, но также в результате возможного трения с противоположными взаимодействующими компонентами во время работы. В настоящем изобретении возможная глубина такого эксплуатационного повреждения была определена путем наблюдения за повреждениями работающих лопастей. В некоторых случаях глубина такого повреждения распространялась номинально до около 0,1 дюйма (2,54 мм) от кромки в аэродинамический профиль. Трение кромок может ухудшать усталостную прочность материала в поврежденной трением области. Начало развития трещин и/или их рост можно затормозить с помощью остаточного сжимающего напряжения в области, примыкающей к области, где может возникнуть такое повреждение.

В настоящее время лопатки выполняют из материалов, обладающих высокой усталостной прочностью. Усталостную прочность обычно повышают с помощью таких методов обработки поверхности, как, например, обычное дробеструйное упрочнение, упрочнение лазерным ударом (описанное Mannava и др.) и низко пластическая обкатка (описанное Prevey, III). Кроме того, в работе Prevey и др., опубликованной в Материалах 5-ой национальной конференции по многоцикловой усталости (2000) "Сопротивление FOD и остановка усталостных трещин в IN718, обработанном низкопластической обкаткой" (FOD Resistance and Fatigue Crack Arrest in Low Plasticity Burnished IN718), содержится обсуждение характера протекания многоцикловой усталости применительно к компонентам турбинных двигателей и описание разных известных способов упрочнения поверхности.

Согласно настоящему изобретению сопротивление этому виду повреждения концевых частей изделий, таких так кромки лопаточных элементов, обеспечивается за счет расположения полосы материала практически по всему поперечному сечению концевой части или кромки. Данная полоса практически полностью, а не только в поверхностном слое или области, находится под более высоким сжимающим напряжением, чем тело элемента. Таким образом, изобретение препятствует возникновению и распространению трещин в концевой части или кромке. В лопаточных элементах турбинных двигателей данная полоса проходит от кромки аэродинамического профиля радиально внутрь него на глубину, например, номинально около 0,1 дюйма (2,54 мм), определенную путем наблюдения за поврежденными в работе элементами, чтобы иметь возможность противостоять эксплуатационному повреждению. Однако полоса проходит от кромки аэродинамического профиля на радиальную глубину, меньшую, чем то место в аэродинамическом профиле, в котором растягивающее напряжение в профиле, необходимое для компенсации сжимающего напряжения в полосе, будет настолько высоко, что оно будет опасным в одном или нескольких вибрационных режимах, характерных для каждой конкретной конфигурации аэродинамического профиля. Обычно такие опасные положения находятся на расстоянии более 10% всей длины пролета аэродинамического профиля от кромки, например, около 0,2 дюйма (5,08 мм) радиальной глубины от кромки на аэродинамическом профиле длиной 2 дюйма (50,8 мм).

В дальнейшем изобретение описывается более подробно со ссылкой на чертеж. На чертеже схематически показан общий вид лопаточного элемента компрессора газотурбинного двигателя, типичный для вращающейся лопатки компрессора или турбины. Лопатка компрессора, обозначенная в общем позицией 10, содержит аэродинамический профиль 12 и основание 14. В некоторых примерах лопатка содержит платформу 16, расположенную между профилем 12 и основанием 14. Аэродинамический профиль 12 имеет концевую часть 18 (или кромочную часть), выполненную заодно с остальной или нижележащей частью тела аэродинамического профиля 12 и радиально наружу от нее. Обычно лопатки газотурбинных двигателей выполняют из сплава на основе, по меньшей мере, одного из элементов Ti, Fe, Ni, Co. Примерами таких серийно выпускаемых сплавов являются следующие сплавы: Ti 6-4, Ti 6-2-4-2, А-286, С 450, In 718, Rebe'95.

Согласно одному варианту осуществления настоящего изобретения аэродинамический профиль 12 снабжен на концевой части 18 полосой 20 из сплава лопатки, выполненной заодно с профилем 12 и находящейся под более высоким сжимающим напряжением, чем профиль 12, прилегающий к полосе 20 и составляющий с нею единое целое. Полоса 20 проходит практически по всему поперечному сечению аэродинамического профиля 12 между передней кромкой 22, задней кромкой 24, нагнетательной стороной 26 и всасывающей стороной 28. В данном примере лопаточного элемента с кромкой "свистящего" (squealer-type) типа полоса проходит практически по всему поперечному сечению кромки.

Предпочтительно, чтобы остаточное сжимающее напряжение в полосе было в интервале от около 10 тысяч фунтов на квадратный дюйм (703 кг/см2) до предела упругости материала. В одном из примеров, где сплавом является сплав In 718 на основе Ni, остаточное сжимающее напряжение в полосе 20 предпочтительно составляет от 50 до 150 тысяч фунтов на квадратный дюйм (3515-10547 кг/см2). Предпочтительно, чтобы полоса 20 проходила в аэродинамический профиль 12 на некоторую глубину до уровня, показанного штриховой линией 30. Глубина полосы в каждом аэродинамическом профиле определяется путем наблюдения за возникновением повреждений во время эксплуатации и выбирается достаточной, чтобы противостоять таким повреждениям. То есть эксплуатационное повреждение может быть определено визуально и, соответственно, возможно установить посредством осмотра использованных лопаток ожидаемую глубину эксплуатационного повреждения, которое может встретиться на новых лопатках. Кроме того, как описано выше, глубину выбирают меньше той, в которой потребуется избыточное потенциально опасное остаточное растягивающее напряжение в аэродинамическом профиле для компенсации сжимающего напряжения в полосе.

В некоторых известных примерах остаточных сжимающих напряжений в поверхностных слоях изделий холодная обработка ограничена до менее чем около 3,5%. Однако полоса под сжимающим напряжением согласно изобретению может подвергаться холодной обработке почти до предела упругости материала без ущерба для нее. Например, холодная обработка может составлять до, по меньшей мере, 15% для сплава на основе Ni и около 10% для сплавов на основе Ti.

При изготовлении лопаточного элемента глубину полосы под сжимающим напряжением во время изготовления заготовки до ее окончательной обработки обычно делают больше, чем в готовом изделии. Такая глубина в заготовке представляет собой сумму глубины, подлежащей обрезке от кромки лопасти во время изготовления для получения проектного зазора или допуска, иногда называемой как глубина обрезки, и глубины, выбранной для готового изделия как способной противостоять эксплуатационным повреждениям.

Одним из предпочтительных способов получения полосы 20 в аэродинамическом профиле 12 является холодная деформация полосы валками. Например, можно использовать одноточечное давление или холодную обработку, проходя аэродинамический профиль 12 от кромки 18 на глубину 30, чтобы получить полосу 20. Как отмечалось выше, глубина 30 выбирается как мера распространения полосы 20 в аэродинамический профиль 12. Затем поперечно профилю прикладывается давление на глубину 30 до тех пор, пока не будет достигнуто выбранное остаточное сжимающее напряжение в полосе 20 практически по всему аэродинамическому профилю. Одним из примеров устройства, которое можно использовать для получения полосы 20, является устройство, описанное в патенте США 5826453 (Prevey, III).

Проиллюстрированные и описанные конкретные примерные варианты воплощения настоящего изобретения являются типичными, но не ограничивают объем изобретения. Специалистам будут очевидны различные модификации и изменения, не выходящие за рамки объема прилагаемой формулы изобретения.

Похожие патенты RU2281402C2

название год авторы номер документа
АРМИРОВАННАЯ ВОЛОКНАМИ ЛОПАТКА КОМПРЕССОРА ИЗ СПЛАВА Al-Li И СПОСОБ ЕЕ ИЗГОТОВЛЕНИЯ 2011
  • Каиро Рональд Ральф
  • Чен Цзяньцян
RU2586033C2
РЕМОНТНЫЙ ЭЛЕМЕНТ ДЛЯ ЛОПАТОЧНОГО УЗЛА ГАЗОВОЙ ТУРБИНЫ И СПОСОБ РЕМОНТА ПОВРЕЖДЕННОЙ ЛОПАТКИ ЛОПАТОЧНОГО УЗЛА ГАЗОВОЙ ТУРБИНЫ 2017
  • Инноченти Мирко
  • Бончинелли Марко
  • Страмаре Стефаниа
  • Джолли Карло
  • Лаццарато Давиде
RU2727543C2
ДОЗВУКОВЫЕ И СТАЦИОНАРНЫЕПРЯМОТОЧНЫЕ ВОЗДУШНО-РЕАКТИВНЫЕ ДВИГАТЕЛИ 2009
  • Руфус Г. Клей
  • Роберт Г. Хокедей
RU2516075C2
МЕТАЛЛИЧЕСКИЕ ЛИСТЫ И ПЛАСТИНЫ С ТЕКСТУРИРОВАННЫМИ ПОВЕРХНОСТЯМИ, УМЕНЬШАЮЩИМИ ТРЕНИЕ, И СПОСОБЫ ИХ ИЗГОТОВЛЕНИЯ 2009
  • Ли Мин
  • Маринелли Джеймс М.
  • Лю Цзяньтао
  • Магньюсен Пол Э.
  • Шеу Саймон
  • Хайниманн Маркус Б.
  • Лю Джон
  • Вега Луис Фанор
RU2506188C2
РЕМОНТ КОНЦЕВОЙ ЧАСТИ КОМПОНЕНТА ТУРБИНЫ С ПОМОЩЬЮ КОМПОЗИТНОЙ ПРЕДВАРИТЕЛЬНО СПЕЧЕННОЙ ПРЕФОРМЫ ЛЕГИРОВАННОЙ БОРОМ ОСНОВЫ 2019
  • Навале, Атул Л.
  • Ярбро, Джеймс А.
  • Гхунакикар, Сомеш Дж.
  • Оливер Варгас, Иван Ф.
RU2785029C1
ПРОДУКТЫ ИЗ АЛЮМИНИЕВОГО СПЛАВА И СПОСОБ ИСКУССТВЕННОГО СТАРЕНИЯ 2009
  • Чакрабарти,Дхруба,Дж.
  • Лиу,Джон
  • Гудмэн,Джей,Х.
  • Венима,Грегори,Б.
  • Сотелл,Ральф,Р.
  • Крист,Синтия,М.
  • Вестерланд,Роберт,В.
RU2531214C2
РАБОЧАЯ ЛОПАТКА ПАРОВОЙ ТУРБИНЫ ДЛЯ ЧАСТИ НИЗКОГО ДАВЛЕНИЯ ПАРОТУРБИННОГО ДВИГАТЕЛЯ 2009
  • Демания Алан Ричард
  • Риаз Мухаммад Сакиб
RU2506430C2
ПЕРО ЛОПАТКИ ТУРБИНЫ И СПОСОБ НАНЕСЕНИЯ ТЕПЛОЗАЩИТНОГО ПОКРЫТИЯ 2011
  • Батт Стефен
  • Чарлтон Скотт
RU2585668C2
ПОГЛОЩАЮЩИЕ И СТОЙКИЕ К РЕЗАНИЮ ЛИСТОВЫЕ МАТЕРИАЛЫ МНОГОЦЕЛЕВОГО НАЗНАЧЕНИЯ 2000
  • Карсон Джон Кит
  • Оттен Женева Гейл
  • Шеннум Стивен Майкл
  • Норком Джон Дэвид
  • Тведделл Ричард Iii
  • Гамильтон Питер Вортингтон
  • Хильдебранд Ричард Эмиль Iv
  • Макгвайер Кеннет Стефен
RU2221698C2
СПОСОБ ИЗГОТОВЛЕНИЯ ПОДШИПНИКА С ДУГООБРАЗНЫМИ ВКЛАДЫШАМИ 1997
  • Орндорф Рой Ли, Мл.
  • Брэди Филип Пол
  • Лангстон Уоррен Кит
RU2202716C2

Реферат патента 2006 года МЕТАЛЛИЧЕСКОЕ ИЗДЕЛИЕ С ВЫПОЛНЕННОЙ ЗА ОДНО ЦЕЛОЕ КОНЦЕВОЙ ПОЛОСОЙ ПОД СЖАТИЕМ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ

Изобретение относится к металлическому изделию подверженному растрескиванию во время работы, например лопаточному элементу газотурбинного двигателя, и способу его изготовления. Изделие выполнено из металлического материала и содержит тело и концевую часть, выполненную заодно с телом. Концевая часть содержит полосу из металлического материала, по существу по всему поперечному сечению концевой части выполненную заодно с телом и проходящую внутрь него. Полоса находится под более высоким сжимающим напряжением, чем тело. Способ изготовления изделия заключается в том, что выбирают глубину полосы в концевой части и затем осуществляют деформацию валками на концевой части. Концевую часть подвергают деформации валками до тех пор, пока не будет достигнуто сжимающее напряжение по всему поперечному сечению концевой части. Изобретение позволяет создать в концевой части изделия полосу с остаточным сжимающим напряжением, препятствующую возникновению трещин. 2 н. и 14 з.п. ф-лы, 1 ил.

Формула изобретения RU 2 281 402 C2

1. Изделие, выполненное из металлического материала, содержащее тело и концевую часть, выполненную заодно с телом, причем концевая часть содержит полосу из металлического материала, по существу, по всему поперечному сечению концевой части, выполненную заодно с телом и проходящую внутрь него, при этом полоса находится под более высоким сжимающим напряжением, чем тело.2. Изделие по п.1, которое выполнено в виде лопаточного элемента, в котором тело является аэродинамическим профилем лопаточного элемента, а концевая часть является кромочной частью аэродинамического профиля.3. Изделие по п.2, в котором металлический материал является сплавом на основе, по меньшей мере, одного элемента, выбранного из группы, включающей Ti, Fe, Ni и Со, а полоса проходит радиально в аэродинамический профиль на глубину, меньшую, чем то положение, при котором потребуется избыточная опасная величина остаточного растягивающего напряжения в аэродинамическом профиле, необходимая для компенсации сжимающего напряжения в полосе.4. Изделие по п.3, в котором упомянутое положение составляет больше, чем примерно 10% от длины пролета аэродинамического профиля.5. Изделие по п.3, в котором сжимающее напряжение находится в диапазоне приблизительно от 10 тысяч фунтов на квадратный дюйм (703 кг/см2) до предела упругости металлического материала.6. Изделие по п.5, в котором сжимающее напряжение находится в интервале приблизительно 50-150 тысяч фунтов на квадратный дюйм (3515-10547 кг/см2).7. Изделие по п.1, которое выполнено в виде лопаточного элемента газотурбинного двигателя с телом в форме аэродинамического профиля, имеющего переднюю и заднюю кромки, нагнетательную и всасывающую стороны, а концевая часть является кромочной частью аэродинамического профиля, расположена радиально снаружи и проходит между ними, при этом полоса расположена радиально снаружи кромочной части.8. Изделие по п.7, в котором металлический материал является сплавом на основе, по меньшей мере, одного элемента, выбранного из группы, включающей Ti, Fe, Ni и Со, и полоса проходит в аэродинамический профиль на глубину, меньшую, чем то положение, при котором потребуется избыточная опасная величина остаточного растягивающего напряжения в аэродинамическом профиле, необходимая для компенсации сжимающего напряжения в полосе.9. Изделие по п.8, в котором упомянутое положение составляет более, чем примерно 10% от длины пролета аэродинамического профиля.10. Изделие по п.8, в котором сжимающее напряжение находится в диапазоне приблизительно от 10 тысяч фунтов на квадратный дюйм (703 кг/см2) до приблизительно предела упругости металлического материала.11. Изделие по п.10, в котором сжимающее напряжение находится в диапазоне приблизительно 50-150 тысяч фунтов на квадратный дюйм (3515-10547 кг/см2).12. Способ изготовления изделия по п.1, заключающийся в том, что выбирают глубину полосы в концевой части и затем осуществляют деформацию валками на концевой части до глубины полосы в концевой части до тех пор, пока не будет достигнуто сжимающее напряжение практически по всему поперечному сечению концевой части.13. Способ по п.12, при котором концевая часть является кромочной частью аэродинамического профиля и для изготовления аэродинамического профиля лопаточного элемента выбирают глубину полосы меньше, чем то положение, в котором потребуется избыточная опасная величина остаточного растягивающего напряжения в аэродинамическом профиле, необходимая для компенсации сжимающего напряжения в полосе.14. Способ по п.13, при котором упомянутое положение составляет более, чем примерно 10% от длины пролета аэродинамического профиля.15. Способ по п.12, при котором при изготовлении аэродинамического профиля лопаточного элемента металлический материал является сплавом на основе, по меньшей мере, одного элемента, выбранного из группы, включающей Ti, Fe, Ni и Со, и сжимающее напряжение находится в диапазоне приблизительно от 10 тысяч фунтов на квадратный дюйм (703 кг/см2) до приблизительно предела упругости металлического материала.16. Способ по п.15, при котором сжимающее напряжение находится в диапазоне приблизительно 50-150 тысяч фунтов на квадратный дюйм (3515-10547 кг/см2).

Документы, цитированные в отчете о поиске Патент 2006 года RU2281402C2

US 5620307 А, 15.04.1997
Способ изготовления лопаток 1988
  • Матвийчук Виктор Андреевич
  • Корнет Игорь Филлипович
SU1600899A1
US 5826453 A, 27.10.1998
Способ изготовления цельнокатанных железнодорожных колес 1976
  • Узлов Иван Герасимович
  • Есаулов Александр Тимофеевич
  • Бабич Владимир Константинович
  • Гринев Анатолий Федорович
  • Мартынов Николай Иванович
  • Староселецкий Михаил Ильич
  • Узлов Владимир Иванович
  • Андреев Юрий Васильевич
  • Шевченко Владимир Иванович
  • Перков Борис Алексеевич
  • Школьник Лев Михайлович
SU716691A1
US 5591009 A, 07.01.1997
US 5666841 А, 16.09.1997.

RU 2 281 402 C2

Авторы

Кролл Дэвид Вилльям

Линко Питер Джон Iii

Даты

2006-08-10Публикация

2001-07-26Подача