Изобретение относится к способу изготовления и конструкции труб нефтяного сортамента, используемых преимущественно при обустройстве и эксплуатации нефтяных и газовых скважин, а именно насосно-компрессорных труб (НКТ) диаметром 60-114 мм, обсадных труб диаметром 114-508 мм и других.
Трубы нефтяного сортамента в трубной колонне должны отвечать требованиям высокой устойчивости против коррозии и условию хорошей многократной свинчиваемости.
Известно, что по трубам нефтяного сортамента транспортируется под большим давлением многокомпонентная нефтесодержащая среда, состоящая из нефти, газа, воды и различных примесей, в виде взвешенных твердых частиц, под действием которых происходит интенсивная коррозия и абразивный износ металла труб и муфт. При этом наиболее интенсивно идут процессы коррозии и эрозионного износа в зоне резьбовых соединений труб, что приводит к размыву резьбы, нарушению герметичности резьбового соединения «труба-муфта» и в конечном итоге к разгерметизации колонн труб и остановке скважин.
Известно применение оцинкованных труб, в которых резьбовые участки подвергают специальной термической обработке. В этом случае после термической обработки резьбовых участков образуется структурно-однородное цинковое покрытие, (см., например, Проскуркин Е.В., Горбунов Н.С. Диффузионные цинковые покрытия. М.: Металлургия, 1972, с.248).
Недостатком такой трубы является низкая твердость полученного цинкового покрытия, ведущая к быстрому износу резьбового соединения трубы.
Наиболее близким аналогом к предложенному способу является способ получения защитного диффузионного покрытия на резьбовых участках стальной трубы и примыкающих к ним поверхностях, включающий обработку резьбовых участков путем изотермической выдержки в диффузионной смеси, содержащей металлический порошок и порошок инертного наполнителя, и последующее охлаждение на воздухе (RU 2221898 С2, МПК 8 С 23 С 10/34, 20.01.2004, с.3, абзац 3, 5 снизу, формула).
Задачей изобретения является получение защитного покрытия на резьбовых участках насосно-компрессорных, бурильных и др. труб, обеспечивающего повышение коррозионной стойкости и герметичности резьбовых участков насосно-компрессорных труб.
Поставленная задача решается за счет того, что при осуществлении предлагаемого способа получения защитного диффузионного покрытия на резьбовых участках стальной трубы и примыкающих к ним поверхностях, включающего обработку резьбовых участков путем изотермической выдержки в диффузионной смеси, содержащей металлический порошок и порошок инертного наполнителя, и последующее охлаждение на воздухе. Согласно данному изобретению используют диффузионную смесь, содержащую металлический порошок, состоящий из смеси порошков цинка, меди и алюминия зернистостью 0,1-0,5 мм и инертный наполнитель, при следующем содержании компонентов в диффузионной смеси, мас.%: цинк 25-40, медь 0,045-0,075, алюминий 0,175-0,225, инертный наполнитель - остальное. В качестве инертного наполнителя используют глинозем или кварцевый песок с зернистостью 0,15-0,7 мм. Изотермическую выдержку проводят в течение 1,0-3,0 часов при температуре 440±10°С с получением защитного покрытия толщиной 30-80 мкм, содержащего следующие компоненты, мас.%: железо 6-15, цинк 84,1-93,4, медь 0,4-0,6, алюминий 0,2-0,3. Полученное покрытие имеет микротвердость, определенную по методу восстановленного отпечатка четырехгранной пирамиды (по Виккерсу), в пределах 4500-5250 МПа.
Кроме того, поставленная задача решается за счет того, что перед заполнением контейнера диффузионной смесью, смесь перемешивают для придания ее частицам скатанной формы. Это позволяет обеспечить надежный отвод газов при проведении процесса создания защитного диффузионного покрытия.
Задача по созданию насосно-компрессорной трубы с защитным покрытием, содержащей корпус с по меньшей мере одним участком резьбы с защитным покрытием, полученным способом, включающим обработку резьбовых участков и примыкающих к ним поверхностей путем изотермической выдержки в диффузионной смеси, содержащей металлический порошок и порошок инертного наполнителя, и последующее охлаждение на воздухе. Согласно данному изобретению используют диффузионную смесь, содержащую металлический порошок, состоящий из смеси порошков цинка, меди и алюминия зернистостью 0,1-0,5 мм и инертный наполнитель, при следующем содержании компонентов в диффузионной смеси, мас.%: цинк 25-40, медь 0,045-0,075, алюминий 0,175-0,225, инертный наполнитель - остальное. В качестве инертного наполнителя используют глинозем или кварцевый песок с зернистостью 0,15-0,7 мм. Изотермическую выдержку проводят в течение 1,0-3,0 часов при температуре 440±10°С с получением защитного покрытия толщиной 30-80 мкм, содержащего следующие компоненты, мас.%: железо 6-15, цинк 84,1-93,4, медь 0,4-0,6, алюминий 0,2-0,3. Полученное покрытие имеет микротвердость, определенную по методу восстановленного отпечатка четырехгранной пирамиды (по Виккерсу), в пределах 4500-5250 МПа.
Технический результат от применения предложенного способа нанесения защитного диффузионного покрытия на резьбовые участки и примыкающие к ним поверхности насосно-компрессорных и обсадных труб, а также от применения указанных труб с описанным защитным покрытием заключается в увеличении срока службы труб и, как следствие, в повышении производительности и снижении стоимости работ при газонефтедобыче.
Защитное покрытие с указанным выше составом не склонно к старению, что свойственно защитным слоям из полимерных материалов, растрескиванию, характерному для стеклоэмалевых и силикатных материалов, а также менее подвержено разрушению слоя за счет потери атомов цинка из-за возникновения гальванической пары Fe-Zn, чем при создании защитного железоцинкового покрытия, в эксплуатационных условиях играет роль твердой смазки для резьбовой пары «муфта-труба».
Для получения защитного покрытия на резьбовой поверхности стальной бурильной трубы резьбовые участки стальной трубы и примыкающие к ним поверхности помещают в контейнеры с диффузионной смесью. Диффузионная смесь состоит из смеси цинкового, медного и алюминиевого порошка зернистостью 0,1-0,5 мм и инертного наполнителя - кварцевого песка или глинозема зернистостью 0,15-0,70 мм.
Приготавливают диффузионную смесь, содержащую смесь металлических порошков и инертного наполнителя, при следующем соотношении компонентов, мас.%:
Сначала приготавливают смесь металлических порошков перемешиванием в мешалке для получения скатанной формы частиц и просеивают через сито с размером ячейки 0,5 мм. Инертный наполнитель перемешивают и просеивают отдельно через сито с размером ячейки 0,7 мм. Затем обе составляющие части диффузионной смеси объединяют и вновь перемешивают. Стальную трубу с резьбовыми концами и примыкающими к ним поверхностями, помещенными в контейнеры с диффузионной смесью, загружают в печь и производят покрытие защитным слоем путем изотермической выдержки при температуре 440±10°С в течение от 1,0 до 3,0 часов с последующим охлаждением на воздухе.
В зависимости от температуры, размеров трубы, времени выдержки и других параметров поверхность защитного покрытия будет содержать следующие компоненты, мас.%: железо 6-15, цинк 84,1-93,4, медь 0,4-0,6, алюминий 0,2-0,3. Толщина покрытия в зависимости от времени изотермической выдержки может быть получена в пределах от 30 до 80 мкм.
Содержание ингредиентов и режим выполнения процесса приведен в табл.1.
В таблице 2 приведены результаты измерения микротвердости поверхностного защитного слоя для различных материалов.
Измерение микротвердости проводили вдавливанием алмазных наконечников по ГОСТ 9450-76 «Измерение стандарт микротвердости вдавливанием алмазных наконечников». Настоящий стандарт определяет измерение микротвердости металлов и сплавов методом восстановленного отпечатка четырехгранной пирамидой с квадратным основанием (по Виккерсу). Этот метод является стандартным при измерении защитных слоев, в частности из железоцинкового покрытия. Нагрузка на индентор при измерении микротвердости составляла 10 г.
Таким образом, изготовленная в соответствии с предлагаемым способом насосно-компрессорная или бурильная труба позволяет получить заявленный технический результат, заключающийся в увеличении срока службы, производительности и снижении стоимости работ при нефтегазодобыче.
название | год | авторы | номер документа |
---|---|---|---|
СОЕДИНИТЕЛЬНАЯ МУФТА ТРУБ НЕФТЯНОГО СОРТАМЕНТА И СПОСОБ ПОЛУЧЕНИЯ ЖЕЛЕЗОЦИНКОВОГО ПОКРЫТИЯ НА РЕЗЬБОВЫХ УЧАСТКАХ | 2003 |
|
RU2244094C1 |
СПОСОБ НАНЕСЕНИЯ ТЕРМОДИФФУЗИОННОГО ЦИНКОВОГО ПОКРЫТИЯ НА СТАЛЬНЫЕ ТРУБЫ И СТАЛЬНАЯ ТРУБА С УКАЗАННЫМ ПОКРЫТИЕМ | 2022 |
|
RU2785211C1 |
СОСТАВ ДЛЯ ЗАЩИТЫ ВНУТРЕННИХ СТЕНОК НАСОСНО-КОМПРЕССОРНЫХ ТРУБ | 2018 |
|
RU2701033C1 |
СПОСОБ ОБРАБОТКИ РЕЗЬБОВЫХ УЧАСТКОВ ТЕРМООЦИНКОВАННЫХ ТРУБ | 1994 |
|
RU2049150C1 |
СПОСОБ ПОЛУЧЕНИЯ ПОКРЫТИЙ НА ИЗДЕЛИЯХ ИЗ НИЗКО- И ВЫСОКОЛЕГИРОВАННЫХ СТАЛЕЙ, ЦВЕТНЫХ МЕТАЛЛОВ ИЛИ ИХ СПЛАВОВ МЕТОДОМ ТЕРМОДИФФУЗИОННОГО ЦИНКОВАНИЯ | 2014 |
|
RU2570856C1 |
СПОСОБ НАНЕСЕНИЯ ТЕРМОДИФФУЗИОННОГО ЦИНКОВОГО ПОКРЫТИЯ И МУФТА С ТЕРМОДИФФУЗИОННЫМ ЦИНКОВЫМ ПОКРЫТИЕМ | 2012 |
|
RU2507300C2 |
НАСОСНО-КОМПРЕССОРНАЯ ТРУБА | 2012 |
|
RU2487229C1 |
СОЕДИНЕНИЕ КОРРОЗИОННОСТОЙКИХ ОБСАДНЫХ ИЛИ НАСОСНО-КОМПРЕССОРНЫХ ТРУБ И СПОСОБ ЕГО ПОЛУЧЕНИЯ | 2008 |
|
RU2384789C1 |
МОДИФИЦИРОВАННЫЙ ПОРОШОК ЦИНКА ДЛЯ ТЕРМОДИФФУЗИОННОГО ЦИНКОВАНИЯ, СПОСОБ НАНЕСЕНИЯ ПОКРЫТИЯ И МУФТА С ТЕРМОДИФФУЗИОННЫМ ЦИНКОВЫМ ПОКРЫТИЕМ | 2008 |
|
RU2383413C1 |
СПОСОБ ТЕРМОДИФФУЗИОННОГО ЦИНКОВАНИЯ | 2014 |
|
RU2557045C1 |
Изобретение относится к способу изготовления и конструкции труб нефтяного сортамента, используемых преимущественно при обустройстве и эксплуатации нефтяных и газовых скважин, а именно насосно-компрессорных труб диаметром 60-114 мм, обсадных труб диаметром 114-508 мм и других труб. Способ включает обработку резьбовых участков и примыкающих к ним поверхностей трубы путем изотермической выдержки в диффузионной смеси и последующее охлаждение на воздухе. Диффузионная смесь содержит металлический порошок, состоящий из смеси порошков цинка, меди и алюминия зернистостью 0,1-0,5 мм, при следующем содержании компонентов в диффузионной смеси, мас.%: цинк 25-40, медь 0,045-0,075, алюминий 0,175-0,225, инертный наполнитель - остальное. Изотермическую выдержку проводят в течение 1,0-3,0 часов при температуре 440±10°С с получением защитного покрытия толщиной 30-80 мкм. Защитное покрытие содержит следующие компоненты, мас.%: железо 6-15, цинк 84,1-93,4, медь 0,4-0,6, алюминий 0,2-0,3. Покрытие имеет микротвердость, определенную по методу восстановленного отпечатка четырехгранной пирамиды в пределах 4500-5250 МПа. Предложенная насосно-компрессорная труба содержит корпус с по меньшей мере одним участком резьбы с защитным покрытием. Защитное покрытие получено вышеуказанным способом. Техническим результатом изобретения является получение покрытия, обеспечивающего повышение коррозионной стойкости и герметичности резьбовых участков труб. 2 н. и 1 з.п. ф-лы, 2 табл.
СПОСОБ ТЕРМОДИФФУЗИОННОЙ ОБРАБОТКИ МЕТАЛЛОВ И СПЛАВОВ | 2001 |
|
RU2221898C2 |
СПОСОБ ОБРАБОТКИ РЕЗЬБОВЫХ УЧАСТКОВ ТЕРМООЦИНКОВАННЫХ ТРУБ | 1994 |
|
RU2049150C1 |
Порошковый состав для диффузионного цинкования деталей из алюминиевых сплавов | 1981 |
|
SU981443A1 |
РОТОР ДЕЗИНТЁЕТАТОРА | 0 |
|
SU354887A1 |
Схема электрических соединений одновыключательной подстанции, выполненной по схеме "мостика" с проходящей длинной линией электропередачи двухстороннего питания | 1972 |
|
SU541240A1 |
Авторы
Даты
2006-09-27—Публикация
2005-06-01—Подача