Изобретение относится к черной металлургии, в частности к стали, используемой для изготовления железнодорожных рельсов.
Известна рельсовая сталь марки Э76Ф [1], содержащая (в мас.%):
Существенным недостатком данной стали является низкая стойкость железнодорожных рельсов без термической обработки и необходимость термообработки стали для повышения эксплуатационных свойств.
Известна выбранная в качестве прототипа рельсовая сталь [2], содержащая (в мас.%):
Существенным недостатком данной стали является низкая эксплуатационная стойкость, обусловленная пониженным комплексом физико-механических свойств.
Желаемым техническим результатом изобретения является повышение комплекса физико-механических свойств и эксплуатационной стойкости.
Для достижения этого рельсовая сталь, содержащая углерод, марганец, кремний, алюминий, азот, ванадий, кальций, барий, железо и в качестве примесей серу, фосфор и медь, дополнительно содержит хром и никель при следующем соотношении компонентов (в мас.%):
при этом примеси содержатся в следующих количествах: сера - не более 0,020%, фосфор - не более 0,025%, медь не более 0,20%.
Заявляемый химический состав стали подобран исходя из следующих предпосылок:
Увеличение кремния до 0,60% повышает пределы текучести и прочности, при снижении кремния менее 0,30% наблюдается резкое снижение данных параметров.
Концентрация хрома выбрана исходя из обеспечения высокого сопротивления износу и высоких прочностных свойств, при этом снижение концентрации хрома менее 0,40% не позволяет обеспечить требуемую стойкость рельсов в пути, а при повышении концентрации более 0,80% значительно возрастает стоимость стали при постоянных прочностных свойствах стали.
Содержание алюминия выбрано исходя, с одной стороны, из получения мелкого действительного зерна, с другой - исключения получения недопустимых глиноземистых неметаллических включений.
Концентрация марганца в выбранных пределах обеспечивает достаточную износостойкость рельсов. Марганец увеличивает устойчивость переохлажденного аустенита и обеспечивает образование дисперсного тонкопластинчатого перлита, имеющего хорошее сочетание прочности, пластичности и вязкости. Поскольку марганец смещает точку фазовых превращений к более низким температурам, с дальнейшим увеличением его концентрации более 1,05% в стали с высоким содержанием углерода возрастает вероятность образования недопустимой структуры верхнего бейнита.
Введение азота позволяет получить измельченное зерно аустенита, что обеспечивает повышение прочностных свойств и увеличение сопротивляемости хрупкому разрушению. Наличие ванадия при этом позволяет добиваться необходимой растворимости азота в соединениях. При наличии азота менее 0,005% невозможно измельчение зерна и соответственно не обеспечивается необходимое упрочнение стали, а более 0,015% приводит к получению нерастворившегося азота и возможного образования недопустимых пузырей в стали. Выбранное содержание и соотношение азота и ванадия обеспечивает получение требуемой ударной вязкости (в том числе и при отрицательных температурах) за счет карбонитридного упрочнения.
Повышение концентрации никеля до 0,30% связано с повышением уровня ударной вязкости при отрицательных температурах, при дальнейшем повышении концентрации никеля возможно получение недопустимых бейнитных структур.
Введение кальция и бария позволяет модифицировать источники концентраторов напряжений - неметаллические включения, исключить образование «опасных» включений глинозема, повысить чистоту стали по оксидным и сульфидным включениям, обеспечить образование глобулярных включений и исключить образование строчечных включений алюминатов. При введении более 0,005% кальция (или бария) в сталь возможно получение грубых барий- кальцийсодержащих неметаллических включений, загрязняющих сталь, вследствие чего снижаются физико-механические свойства стали.
Ограничение концентрации фосфора, серы и меди обусловлено улучшением качества поверхности готовой продукции после прокатки и повышения ее физико-механических свойств.
Серия опытных плавок с заявляемым химическим составом была выплавлена в дуговых печах ДСП-100И7. Химический состав приведен в таблице 1. После разливки стали на МНЛЗ осуществляли прокатку железнодорожных рельсов типа Р65. После прокатки рельсов термообработка не проводилась. Результаты испытаний механических свойств в горячекатанном состоянии в сравнении с рельсовой сталью Э76Ф (после объемной закалки в масле и отпуске) приведены в таблице 2. Таким образом, заявляемый химический состав обеспечивает повышение механических свойств рельсовой стали по всему спектру контролируемых физико-механических параметров.
Источники информации
1. А.С.Зубченко. Марочник сталей и сплавов - М.: Машиностроение, 2003. - 713 с.
2. Патент РФ №2131946, С 22 С 38/46.
Химический состав стали
Механические свойства стали
название | год | авторы | номер документа |
---|---|---|---|
РЕЛЬСОВАЯ СТАЛЬ | 2005 |
|
RU2291220C1 |
РЕЛЬСОВАЯ СТАЛЬ | 2009 |
|
RU2426812C2 |
РЕЛЬСОВАЯ СТАЛЬ | 2008 |
|
RU2397271C2 |
РЕЛЬСОВАЯ СТАЛЬ | 2007 |
|
RU2361007C1 |
РЕЛЬСОВАЯ СТАЛЬ | 2009 |
|
RU2426813C1 |
РЕЛЬСОВАЯ СТАЛЬ | 2009 |
|
RU2410462C1 |
РЕЛЬСОВАЯ СТАЛЬ | 2005 |
|
RU2291218C1 |
РЕЛЬСОВАЯ СТАЛЬ | 2009 |
|
RU2412274C1 |
РЕЛЬСОВАЯ СТАЛЬ | 2011 |
|
RU2457272C1 |
РЕЛЬСОВАЯ СТАЛЬ | 2009 |
|
RU2415195C1 |
Изобретение относится к черной металлургии, в частности к стали, используемой для изготовления железнодорожных рельсов. Предложена рельсовая сталь, содержащая в мас.%: углерод 0,71-0,82, марганец 0,75-1,05 кремний 0,30-0,60, алюминий не более 0,005, азот 0,005-0,015, ванадий 0,05-0,15, хром 0,40-0,80, никель 0,03-0,30, кальций 0,0001-0,005, барий 0,0001-0,005, железо - остальное, при этом в качестве примесей сталь может содержать серу не более 0,020, фосфор не более 0,025, медь не более 0,20. Техническим результатом изобретения является повышение комплекса физико-механических свойств и эксплуатационной стойкости. 2 табл.
Рельсовая сталь, содержащая углерод, марганец, кремний, алюминий, азот, ванадий, кальций, барий, железо и в качестве примесей серу, фосфор и медь, отличающаяся тем, что она дополнительно содержит хром и никель при следующем соотношении компонентов, мас.%:
при этом примеси содержатся в следующих количествах: сера не более 0,020, фосфор не более 0,025, медь не более 0,20.
Рельсовая сталь | 1989 |
|
SU1691420A1 |
РЕЛЬСОВАЯ СТАЛЬ | 1999 |
|
RU2161210C1 |
Сталь | 1986 |
|
SU1323221A1 |
Рельсовая сталь | 1980 |
|
SU954483A1 |
JP 2004315928 A, 11.11.2004. |
Авторы
Даты
2007-01-10—Публикация
2005-05-04—Подача