Изобретение относится к черной металлургии, в частности к стали, используемой для изготовления железнодорожных рельсов, предназначенных для высокоскоростного движения в условиях Сибири и Крайнего Севера.
Известна выбранная в качестве прототипа рельсовая сталь [1], содержащая, мас.%:
Существенным недостатком данной стали является низкая эксплуатационная стойкость железнодорожных рельсов, обусловленная недостаточной чистотой стали по неметаллическим включениям.
Известна также рельсовая сталь марки Э78ХСФ, содержащая, мас.%:
Основным недостатком данной стали является низкий уровень ударной вязкости, пластичности и повышенная загрязненность стали строчечными неметаллическими включениями.
Желаемым техническим результатом изобретения является повышение чистоты стали по неметаллическим включениям и эксплуатационной стойкости рельсов при отрицательных температурах применительно к условиям Сибири и Крайнего Севера.
Для достижения этого рельсовая сталь, содержащая углерод, марганец, кремний, алюминий, ванадий, хром, азот, никель, кальций, барий, железо, дополнительно содержит стронций и церий при следующем соотношении компонентов, мас.%:
при этом в качестве примесей сталь может содержать серу не более 0,020%, фосфора не более 0,025%, меди не более 0,20%.
Заявляемый химический состав стали подобран исходя из следующих предпосылок.
Выбранные концентрационные пределы углерода обеспечивают повышение пластичности и ударной вязкости стали без снижения уровня твердости и прочности.
Установленные концентрационные пределы кремния обеспечивают упрочнение феррита, тем самым, повышая пределы текучести и прочности рельсовой стали в горячекатаном состоянии. При снижении кремния менее 0,30% наблюдается резкое снижение данных параметров. При повышении концентрации кремния свыше 0,55% возрастает вероятность снижения ударной вязкости стали.
Концентрация хрома выбрана исходя из обеспечения высокого сопротивления износу и высоких прочностных свойств, при этом снижение концентрации хрома менее 0,40% не позволяет обеспечить требуемую стойкость рельсов в пути, а при повышении концентрации более 0,95% снижаются пластические свойства горячекатаной рельсовой стали.
Содержание алюминия выбрано с учетом, с одной стороны, получения мелкого действительного зерна, с другой - исключения получения недопустимых глиноземистых неметаллических включений.
Концентрация марганца в выбранных пределах обеспечивает достаточную износостойкость рельсов. Марганец увеличивает устойчивость переохлажденного аустенита и обеспечивает образование дисперсного тонкопластинчатого перлита, имеющего хорошее сочетание прочности, пластичности и вязкости. Поскольку марганец смещает точку фазовых превращений к более низким температурам, дальнейшее увеличение его концентрации более 1,20% приводит к снижению пластичности стали.
Введение азота позволяет получить измельченное зерно аустенита, что обеспечивает повышение прочностных свойств и увеличение сопротивляемости стали хрупкому разрушению. Наличие ванадия при этом позволяет добиваться необходимой растворимости азота в соединениях. При наличии азота менее 0,005% невозможно измельчение зерна и, соответственно, не обеспечивается необходимое упрочнение стали, а более 0,020% приводит к получению нерастворившегося азота и возможного образования недопустимых пузырей в стали. Выбранное содержание и соотношение азота и ванадия обеспечивают получение требуемой ударной вязкости (в том числе и при отрицательных температурах) за счет карбонитридного упрочнения.
Повышение концентрации никеля до 0,30% связано с повышением уровня ударной вязкости при отрицательных температурах, дальнейшее повышение концентрации никеля экономически не целесообразно.
Совместное введение стронция, церия, кальция и бария позволяет модифицировать источники концентраторов напряжений - неметаллические включения, исключить образование «опасных» включений глинозема, повысить чистоту стали по оксидным и сульфидным включениям, обеспечить образование глобулярных включений и исключить образование строчечных включений алюминатов. При введении более 0,005% кальция, более 0,005% бария и более 0,008% стронция и церия в сталь возможно получение грубых барий-кальций-стронций-церийсодержащих неметаллических включений, загрязняющих сталь, вследствие чего снижается ударная вязкость стали. Дополнительное введение в сталь стронция обеспечивает повышение жидкотекучести шлака, тем самым, способствуя наиболее эффективной очистке металла от неметаллических включений.
Ограничение концентрации фосфора, серы и меди обусловлено улучшением качества поверхности готовой продукции после прокатки.
Серия опытных плавок с заявляемым химическим составом была выплавлена в дуговых печах ДСП-100И7. Химический состав приведен в таблице 1. После разливки стали на МНЛЗ осуществляли прокатку железнодорожных рельсов типа Р65. После прокатки рельсов термообработка не проводилась. Результаты замера длины строчки хрупкоразрушенных неметаллических включений в горячекатаном состоянии в сравнении с рельсовой сталью [1, 2] приведены в таблице 2. Результаты испытаний механических свойств рельсов в горячекатаном состоянии в сравнении с рельсовой сталью Э76Ф (после объемной закалки в масле и отпуске) приведены в таблице 3.
Таким образом, заявляемый химический состав обеспечивает повышение чистоты стали по хрупкоразрушенным неметаллическим включениям, а также повышение хладостойкости и механических свойств до уровня свойств объемно-закаленных рельсов.
Список источников
1. Патент РФ №2291221 C1.
2. ГОСТ Р 51685-2000 «Рельсы железнодорожные. Общие технические условия».
Механические свойства стали
название | год | авторы | номер документа |
---|---|---|---|
РЕЛЬСОВАЯ СТАЛЬ | 2008 |
|
RU2397271C2 |
РЕЛЬСОВАЯ СТАЛЬ | 2009 |
|
RU2412274C1 |
РЕЛЬСОВАЯ СТАЛЬ | 2011 |
|
RU2457272C1 |
РЕЛЬСОВАЯ СТАЛЬ | 2009 |
|
RU2426812C2 |
РЕЛЬСОВАЯ СТАЛЬ | 2009 |
|
RU2415195C1 |
РЕЛЬСОВАЯ СТАЛЬ | 2005 |
|
RU2291218C1 |
РЕЛЬСОВАЯ СТАЛЬ | 2009 |
|
RU2426813C1 |
СТАЛЬ | 2008 |
|
RU2364657C1 |
РЕЛЬСОВАЯ СТАЛЬ | 2008 |
|
RU2365667C1 |
РЕЛЬСОВАЯ СТАЛЬ | 2008 |
|
RU2368694C1 |
Изобретение относится к черной металлургии, в частности к стали, используемой для изготовления железнодорожных рельсов, предназначенных для высокоскоростного движения в условиях Сибири и Крайнего Севера. Сталь содержит углерод, марганец, кремний, алюминий, ванадий, хром, азот, никель, кальций, барий, стронций, церий, железо и примеси при следующем соотношении компонентов, мас.%: углерод 0,65-0,75, марганец 0,85-1,20, кремний 0,30-0,55, алюминий - не более 0,005, азот 0,005-0,015, ванадий 0,05-0,15, хром 0,40-0,95, никель 0,03-0,30, кальций 0,0001-0,005, барий 0,0001-0,005, стронций 0,0001-0,008, церий 0,0001-0,008, железо и примеси - остальное. В качестве примесей сталь может содержать серу не более 0,020 мас.%, фосфор - не более 0,025 мас.%, медь - не более 0,20 мас.%. Повышаются чистота стали по неметаллическим включениям и эксплуатационная стойкость рельсов при отрицательных температурах. 2 табл.
Рельсовая сталь, содержащая углерод, марганец, кремний, алюминий, ванадий, хром, азот, никель, кальций, барий, железо и примеси, отличающаяся тем, что она дополнительно содержит стронций и церий при следующем соотношении компонентов, мас.%:
при этом в качестве примесей сталь может содержать серу не более 0,020%, фосфор не более 0,025%, медь не более 0,20%.
РЕЛЬСОВАЯ СТАЛЬ | 2005 |
|
RU2291218C1 |
РЕЛЬСОВАЯ СТАЛЬ | 2005 |
|
RU2291221C1 |
РЕЛЬСОВАЯ СТАЛЬ | 2005 |
|
RU2291220C1 |
РЕЛЬСОВАЯ СТАЛЬ | 2005 |
|
RU2295587C1 |
РЕЛЬСОВАЯ СТАЛЬ | 1996 |
|
RU2100471C1 |
Рельсовая сталь | 1989 |
|
SU1691420A1 |
Способ обработки целлюлозных материалов, с целью тонкого измельчения или переведения в коллоидальный раствор | 1923 |
|
SU2005A1 |
Способ и приспособление для нагревания хлебопекарных камер | 1923 |
|
SU2003A1 |
Устройство двукратного усилителя с катодными лампами | 1920 |
|
SU55A1 |
Авторы
Даты
2009-07-10—Публикация
2007-12-03—Подача