РЕЛЬСОВАЯ СТАЛЬ Российский патент 2012 года по МПК C22C38/46 

Описание патента на изобретение RU2457272C1

Изобретение относится к черной металлургии, в частности к стали, используемой для изготовления железнодорожных рельсов.

Известна рельсовая сталь [1], содержащая (в мас.%):

углерод 0,71-0,82 марганец 0,75-1,05 кремний 0,30-0,60 алюминий не более 0,005 азот 0,005-0,015 ванадий 0,05-0,15 хром 0,40-0,80 никель 0,03-0,30 кальций 0,0001-0,005 барий 0,0001-0,005 железо остальное,

при этом примеси содержаться в следующих количествах: сера - не более 0,020%, фосфор - не более 0,025%, медь не более 0,20%.

Существенным недостатком данной стали является наличие в структуре недеформирующихся и хрупкоразрушенных неметаллических включений из-за модифицирования стали кальцием.

Известна выбранная в качестве прототипа рельсовая сталь [2], содержащая (в мас.%):

углерод 0,71-0,82 марганец 0,75-1,05 кремний 0,45-0,80 алюминий 0,005-0,015 азот 0,0005-0,015 ванадий 0,03-0,09 хром 0,35-0,70 никель 0,03-0,20 железо остальное

Существенным недостатком данной стали является низкая эксплуатационная стойкость, обусловленная пониженным комплексом физико-механических свойств.

Желаемым техническим результатом изобретения является повышение чистоты стали по неметаллическим включениям для обеспечения надежности и контактно-усталостной прочности рельсов.

Для достижения этого рельсовая сталь, содержащая углерод, марганец, кремний, алюминий, азот, ванадий, хром, никель, железо и в качестве примесей серу, фосфор и медь, отличающаяся тем, что в ней дополнительно ограничено содержание кислорода при следующем соотношении компонентов (в мас.%):

углерод 0,71-0,90 марганец 0,85-1,20 кремний 0,20-0,40 алюминий не более 0,004 азот 0,010-0,018 ванадий 0,05-0,15 хром 0,40-0,80 никель 0,03-0,20 кислород не более 0,0020 железо остальное,

при этом примеси содержатся в следующих количествах: сера - не более 0,020%, фосфор - не более 0,020%, медь не более 0,20%.

Заявляемый химический состав стали подобран исходя из следующих предпосылок.

Выбранное содержание углерода при установленном соотношении марганца, кремния и хрома обеспечивает повышение ударной вязкости, пластичности при сохранении твердости и прочности стали. Увеличение содержания углерода по сравнению с прототипом позволит дополнительно повысить контакно-усталостную прочность рельсов. Верхний предел содержания углерода установлен, исходя из того, что при увеличении его свыше 0,90% происходит резкое снижение показателей пластичности и ударной вязкости рельсовой стали.

Концентрация кремния установлена для обеспечения сбалансированного уровня механических свойств рельсов, при этом снижение его концентрации менее 0,20% не обеспечивает требуемый уровень свойств, при повышении 0,40% возрастает вероятность образования неблагоприятной структуры.

Концентрация хрома выбрана исходя из обеспечения высокого сопротивления износу и высоких прочностных свойств, при этом снижение концентрации хрома менее 0,40% не позволяет обеспечить требуемую стойкость рельсов в пути, а при повышении концентрации более 0,80% значительно возрастает стоимость стали при постоянных прочностных свойствах стали.

Снижение содержания алюминия до 0,004% и кислорода менее 0,0020% обеспечивает повышение чистоты металла по неметаллическим включениям, приводит к уменьшению их размеров и количества. Содержание алюминия более 0,004% и кислорода более 0,0018% приводит к загрязнению стали строчками неметаллических включений больших размеров.

Концентрация марганца в выбранных пределах обеспечивает достаточную износостойкость рельсов. Марганец увеличивает устойчивость переохлажденного аустенита и при содержании не менее 0,85% обеспечивает образование дисперсного тонкопластинчатого перлита, имеющего хорошее сочетание прочности, пластичности и вязкости. Поскольку марганец смещает точку фазовых превращений к более низким температурам, дальнейшее увеличение его концентрации более 1,20% в стали с высоким содержанием углерода приводит к хрупкости рельсов.

Введение азота от 0,010 до 0,018 позволяет также повысить прочностные свойства рельсов и увеличить сопротивление хрупкому разрушению. Наличие ванадия при этом позволяет добиваться необходимой растворимости азота в соединениях. При наличии азота менее 0,010% невозможно обеспечить необходимое упрочнение стали, а при содержании азота более 0,018% приводит к получению нерастворившегося азота и возможного образования недопустимых пузырей в стали. Выбранное содержание и соотношение азота и ванадия обеспечивает получение требуемой ударной вязкости.

Ограничение концентрации никеля до 0,20% связано с возможностью образования структурно-свободного феррита, имеющего низкую износостойкость.

Ограничение концентрации фосфора, серы и меди обусловлено улучшением качества поверхности готовой продукции после прокатки и повышения ее физико-механических свойств.

Серия опытных плавок с заявляемым химическим составом была выплавлена в дуговых печах ДСП-100И7. Химический состав приведен в таблице 1. После разливки стали на МНЛЗ осуществляли прокатку железнодорожных рельсов типа Р65. После прокатки рельсов термообработка не проводилась. Результаты испытаний механических свойств в горячекатаном состоянии в сравнении с рельсовой сталью-прототипом (после объемной закалки в масле и отпуске) приведены в таблице 2. Таким образом, заявляемый химический состав с ограниченным содержанием кислорода обеспечивает повышение чистоты стали по неметаллическим включениям при обеспечении достаточно высокого уровня механических свойств рельсов в нетермоупрочненном состоянии, сопоставимом с уровнем механических свойств стали-прототипа в термоупрочненном состоянии.

Источники информации

1. RU 2292221 C1, C22C 38/46

2. Патент РФ №2131946, С22С 38/46.

Таблица 1 Химический состав стали Состав С Si Mn Cr V AI N Ni S P Cu Fe 1 0,90 0,20 0,85 0,80 0,08 0,001 0,010 0,03 0,007 0,016 0,06 ост 2 0,77 0,40 0,88 0,40 0,09 0,004 0,012 0,10 0,008 0,019 0,08 ост 3 0,71 0,34 0,86 0,47 0,11 0,004 0,011 0,20 0,006 0,009 0,01 ост 4 0,80 0,23 0,89 0,55 0,07 0,001 0,012 0,12 0,005 0,015 0,15 ост 5 0,77 0,36 1,20 0,69 0,11 0,003 0,018 0,14 0,012 0,018 0,20 ост 6 0,81 0,40 1,10 0,50 0,15 0,004 0,012 0,18 0,020 0,020 0,16 ост прото
тип
0,71-0,82 0,45-0,80 0,75-1,05 0,35-0,70 0,03-0,09 0,005-0,015 0,0005-0,015 0,03-0,20 ≤0,020 ≤0,020 ≤0,20 ост

Таблица 2 Механические свойства стали и результаты оценки неметаллических включений Состав Предел текучести, Н/мм2 Предел прочности, Н/мм2 Относитель
ное удлинение, %
Относительное сужение, % KCU ударная вязкость, Дж/см2 Неметаллические включения, мм
+20°С недеформирующие
ся
хрупкоразрушен
ные
1 1100 1190 10 20 20 0 0 2 900 1180 12 21 21 0,001 0 3 800 1190 12 28 25 0 0,01 4 889 1170 13 27 24 0 0 5 1000 1150 11 22 26 0 0 6 900 1170 10 21 23 0 0 Прото
тип (закал
ка и отпуск)
880-1200 1350-1550 10-17 30-34 33-44 - -

Похожие патенты RU2457272C1

название год авторы номер документа
РЕЛЬСОВАЯ СТАЛЬ 2007
  • Дементьев Валерий Петрович
  • Черняк Саул Самуилович
  • Павлов Вячеслав Владимирович
  • Корнева Лариса Викторовна
  • Хоменко Андрей Павлович
  • Алексеев Николай Терентьевич
  • Серпиянов Алексей Иванович
  • Тужилина Лариса Викторовна
RU2361007C1
РЕЛЬСОВАЯ СТАЛЬ 2009
  • Дементьев Валерий Петрович
  • Корнева Лариса Викторовна
  • Черняк Саул Самуилович
  • Руденков Валерий Александрович
  • Алексеев Николай Терентьевич
  • Хоменко Андрей Павлович
  • Поздеев Владимир Николаевич
RU2412274C1
РЕЛЬСОВАЯ СТАЛЬ 2009
  • Юрьев Алексей Борисович
  • Мухатдинов Насибулла Хадиатович
  • Степашин Андрей Михайлович
  • Козырев Николай Анатольевич
  • Корнева Лариса Викторовна
  • Атконова Ольга Петровна
RU2415195C1
РЕЛЬСОВАЯ СТАЛЬ 2010
  • Юрьев Алексей Борисович
  • Волков Константин Владимирович
  • Кузнецов Евгений Павлович
  • Юнин Геннадий Николаевич
  • Могильный Виктор Васильвич
  • Корнева Лариса Викторовна
  • Бойков Дмитрий Владимирович
RU2449045C1
РЕЛЬСОВАЯ СТАЛЬ 2009
  • Юрьев Алексей Борисович
  • Мухатдинов Насибулла Хадиатович
  • Степашин Андрей Михайлович
  • Козырев Николай Анатольевич
  • Корнева Лариса Викторовна
  • Никулина Алевтина Леонидовна
  • Бойков Дмитрий Владимирович
RU2410462C1
РЕЛЬСОВАЯ СТАЛЬ 2008
  • Павлов Вячеслав Владимирович
  • Юрьев Алексей Борисович
  • Годик Леонид Александрович
  • Козырев Николай Анатольевич
  • Корнева Лариса Викторовна
RU2368694C1
РЕЛЬСОВАЯ СТАЛЬ 2009
  • Юрьев Алексей Борисович
  • Мухатдинов Насибулла Хадиатович
  • Козырев Николай Анатольевич
  • Корнева Лариса Викторовна
  • Никулина Алевтина Леонидовна
RU2426812C2
РЕЛЬСОВАЯ СТАЛЬ 2008
  • Дементьев Валерий Петрович
  • Черняк Саул Самуилович
  • Корнева Лариса Викторовна
  • Хоменко Андрей Павлович
  • Алексеев Николай Терентьевич
  • Серпиянов Алексей Иванович
RU2397271C2
РЕЛЬСОВАЯ СТАЛЬ 2009
  • Мохов Глеб Владимирович
  • Мухатдинов Насибулла Хадиатович
  • Козырев Николай Анатольевич
  • Могильный Виктор Васильевич
  • Корнева Лариса Викторовна
  • Никулина Алевтина Леонидовна
  • Бойков Дмитрий Владимирович
RU2426813C1
РЕЛЬСОВАЯ СТАЛЬ 2002
  • Ворожищев В.И.
  • Черняк С.С.
  • Козырев Н.А.
  • Дементьев В.П.
  • Тужилина Л.В.
  • Войлошников В.Д.
RU2224044C2

Реферат патента 2012 года РЕЛЬСОВАЯ СТАЛЬ

Изобретение относится к области черной металлургии, в частности к стали, используемой для изготовления железнодорожных рельсов, а также рельсов для метрополитена. Рельсовая сталь содержит углерод, марганец, кремний, алюминий, азот, ванадий, хром, никель, кислород, железо и в качестве примесей серу, фосфор и медь при следующем соотношении компонентов, в мас.%: углерод 0,71-0,90, марганец 0,85-1,20, кремний 0,20-0,40, алюминий не более 0,004, азот 0,010-0,018, ванадий 0,05-0,15, хром 0,40-0,80, никель 0,03-0,20, кислород не более 0,0020, железо и примеси - остальное, при этом примеси содержатся в следующих количествах: сера - не более 0,020, фосфор - не более 0,020, медь не более 0,20. Техническим результатом является повышение чистоты стали по неметаллическим включениям для обеспечения надежности и контактно-усталостной прочности рельсов. 2 табл.

Формула изобретения RU 2 457 272 C1

Рельсовая сталь, содержащая углерод, марганец, кремний, алюминий, азот, ванадий, хром, никель, железо и в качестве примесей серу, фосфор и медь, отличающаяся тем, что она дополнительно содержит кислород при следующем соотношении компонентов, мас.%:
углерод 0,71-0,90 марганец 0,85-1,20 кремний 0,20-0,40 алюминий не более 0,004 азот 0,010-0,018 ванадий 0,05-0,15 хром 0,40-0,80 никель 0,03-0,20 кислород не более 0,0020 железо и примеси остальное,


при этом примеси содержатся в следующих количествах, %: сера не более 0,020, фосфор не более 0,020, медь не более 0,20.

Документы, цитированные в отчете о поиске Патент 2012 года RU2457272C1

САМОНАСТРАИВАЕМАЯ АВТОНОМНАЯ СИСТЕМА ДЛЯ ПОВЫШЕНИЯ ЭКСПЛУАТАЦИОННЫХ СВОЙСТВ ДВУХЗВЕННОГО ТЯГОВО-ЭНЕРГЕТИЧЕСКОГО СРЕДСТВА 1992
  • Сураев Николай Гаврилович
RU2006406C1
СПОСОБ ПРОИЗВОДСТВА ПЕРЛИТНОГО РЕЛЬСА С ПРЕВОСХОДНЫМИ ИЗНОСОСТОЙКОСТЬЮ И ПЛАСТИЧНОСТЬЮ 2007
  • Уеда Масахару
  • Секи Казунори
  • Сато Такуя
  • Ямамото Такеси
RU2400543C1
РЕЛЬСОВАЯ СТАЛЬ 1999
  • Могильный В.В.
  • Пятайкин Е.М.
  • Козырев Н.А.
  • Царев В.Ф.
  • Константинов А.П.
RU2197553C2
Рельс, способ его изготовления и способ регулирования его охлаждения 1991
  • Гордон О.Бесч
  • Джон А.Ховланд
  • Джун Фурукава
  • Хидеюки Яманака
  • Козо Фукуда
  • Тамоо Хорита
  • Юзуру Катаока
  • Масахиро Уеда
  • Тетсунари Иде
  • Атсуси Ито
  • Такао Гино
SU1839687A3
Способ гашения колебаний 1988
  • Волков Евгений Викторович
  • Ковальчук Александр Кондратьевич
  • Лобачев Вячеслав Иванович
SU1493831A1
Топчак-трактор для канатной вспашки 1923
  • Берман С.Л.
SU2002A1
Способ обработки целлюлозных материалов, с целью тонкого измельчения или переведения в коллоидальный раствор 1923
  • Петров Г.С.
SU2005A1

RU 2 457 272 C1

Авторы

Волков Константин Владимирович

Кузнецов Евгений Павлович

Могильный Виктор Васильевич

Корнева Лариса Викторовна

Бойков Дмитрий Владимирович

Атконова Ольга Петровна

Даты

2012-07-27Публикация

2011-02-17Подача