СПОСОБ ОКИСЛЕНИЯ СУЛЬФИДОВ НЕФТИ Российский патент 2007 года по МПК C07C315/02 C10G27/12 B01J23/28 

Описание патента на изобретение RU2291859C1

Изобретение относится к усовершенствованию способа окисления сульфидов нефти и может быть использовано в нефтеперерабатывающей и нефтехимической промышленности.

В настоящее время сульфиды нефти в основном окисляют водным раствором пероксида водорода в присутствии различных катализаторов.

Известен способ окисления сульфидов нефти водным раствором пероксида водорода в присутствии катализатора серной кислоты (авторское свидетельство СССР №206579. БИ №1, 1968). Недостатками способа являются высокая коррозионная агрессивность серной кислоты и низкая глубина превращения сульфидов в сульфоксиды (65-68%).

Известно, что в качестве катализатора для окисления сульфидов нефти используют карбонильные соединения (авторское свидетельство СССР №774173. БИ №20, 1989). Недостатками способа являются большой расход катализатора (1-5% на сырье), низкая селективность (70-72%) и малая скорость окисления.

Известен также способ окисления сульфидов нефти в присутствии катализатора - соединений молибдена и кальция (авторское свидетельство СССР №524799. БИ №30, 1976). Существенный недостаток способа - большие потери катализатора в результате растворения его в органической фазе и малая скорость окисления.

Наиболее близким по технической сущности и достигаемому результату является способ (прототип), где окисление сульфидов нефти пероксидом водорода проводят в присутствии пероксокомплексов молибдена (патент РФ №2238935. БИ №30, 2004).

Окисление сульфидов нефти в присутствии пероксокомплексов молибдена проводят при 60°С. Продолжительность окисления 20-40 минут. Глубина превращения сульфидов в сульфоксиды 87-92%. Расход катализатора 0,003-0,005% масс. на сырье.

Целью изобретения является повышение глубины превращения сульфидов в сульфоксиды, уменьшение продолжительности окисления и расхода катализатора.

Поставленная цель достигается окислением сульфидов пероксидом водорода в присутствии бис-алкилсульфоксидных пероксокомплексов молибдена.

Способ осуществляют следующим образом. Растворяют 15 г МоО3 (или 18,0 г Н2MoO4) в 1 литре 10%-ного водного раствора пероксида водорода при температуре 60-70°С. При этом пероксид водорода реагирует с оксидом молибдена и образуется пероксокомплекс молибдена. Затем полученную реакционную массу охлаждают до 25-30°С и при интенсивном перемешивании и охлаждении приливают в 400-500 мл диметилсульфоксид или другие сульфоксиды (нельзя приливать наоборот - в раствор пероксомолибденовой кислоты сульфоксиды. В этом случае возможен выброс реакционной массы). Реакционную массу приливают со скоростью, чтобы температура не превышала 30°С. Для резкого снижения температуры надо предусмотреть возможность подачи холодной воды для охлаждения реактора. При взаимодействии пероксомолибденовой кислоты с алкилсульфоксидами образуются бис-алкилсульфоксидные пероксокомплексы молибдена, содержащие во внутренней сфере сульфоксиды в виде лигандов. Находясь во внутренней сфере комплекса, сульфоксиды резко повышают каталитическую активность последнего в реакциях окисления сульфидов. Выход бис-алкилсульфоксидных пероксокомплексов молибдена формулы MoO(O2)2LL', где L и L' - одинаковые или различные сульфоксиды, в зависимости от природы сульфоксидов от 70 до 80% мольн. Полученный продукт анализировали спектрофотометрическими методами. В ИК-области спектра наблюдаются интенсивные полосы поглощения при 810, 1090,2350 см-1, характерные для сульфоксидов (Сигэру Оаэ. Химия органических соединений серы. М.: Химия, 1975. - 401 с.) и для пероксокомплексов групп (в см-1):

(Вольнов И.И. Пероксокомплексы хрома, молибдена, вольфрама. М.: Наука, 1989. 104 с.) Исходя из экспериментальных данных и литературных источников предполагается, что полученные бис-алкилсульфоксидные пероксокомплексы молибдена имеют следующую структурную формулу:

где R и R' - алкильные радикалы С-C8 нормального строения или изо-строения.

В качестве лигандов LL' могут быть и сульфоксиды, имеющие циклическую структуру

где R и R' - углеводородные радикалы (С312) в основном насыщенного характера. Хорошие результаты дает концентрат сульфоксидов, полученных из нефтяного сырья и имеющих структуру, как указано выше. Следует также отметить, что катализатор можно получить, используя любые молибденсодержащие соединения: МоО3, Н2MoO4, молибдат аммония, стеарат молибдена, нафтенат молибдена, ацетилацетонат молибденила, фосфорно-молибденовую кислоту и др. Окисление проводят в четырехгорлой колбе (реактор), снабженной механической мешалкой, термометром, обратным холодильником и капельной воронкой. В колбу загружают сырье и нагревают до заданной температуры. В нагретое сырье при перемешивании вводят все количество пероксида водорода и катализатора и выдерживают при заданной температуре. Момент начала реакции отсчитывают со времени добавления к реакционной термостатируемой массе рассчитанного количества пероксида водорода и катализатора. По завершении реакции содержимое реактора охлаждают и отделяют органический слой (оксидат) от водного. В оксидате определяют содержание сульфоксидной серы неводным потенциометрическим титрованием (Wimer D.C. Titration of sulfoxide in Acetic Anhydride. Anal. Chem. 1958. V.30. no.1. P.2060).

В качестве сырья используют дизельную и масляные фракции высокосернистой нефти и концентрат сульфидов. Концентрат сульфидов получают экстракцией 86%-ной серной кислоты (Чертков Я.Б., Спиркин В.Г., Демишев В.Н. Применение серной кислоты для извлечения сероорганических соединений из нефтяных фракций. - Нефтехимия, 1965, т.5, №5, с.747). Содержание сульфидной серы в сырье определяют методом потенциометрической иодометрии (Гальперн Г.Д., Гирина Г.П., Лукьяница В.Г. Методы анализа органических соединений нефти, их смесей и производных.- М.: Наука, 1969, 95 с.)

Изобретение иллюстрируется следующими примерами.

Пример 1. К 100 г фракции дизельного топлива арланской нефти с пределами выкипания 190-360°С, содержащей 0,9% масс. сульфидной серы, прибавляют при 60°С в один прием 3,3 мл 27%-ного водного раствора пероксида водорода и 0,001 г бис-алкилсульфоксида пероксокомплекса молибдена, полученного из молибдата аммония и диметилсульфоксида по вышеописанной методике. Через 10 минут перемешивания в реакторе с мешалкой получают 100,2 г оксидата с содержанием сульфоксидной серы 0,88% масс. Глубина окисления сульфидов в сульфоксиды составляет 97,7%.

Пример 2. К 100 г дизельной фракции Чекмагушевской нефти с пределами выкипания 190-280°С и содержащей 1% сульфидной серы прибавляют при 40°С в один прием 3,1 мл 30%-ного водного раствора пероксида водорода и 0,0015 г бис-алкилсульфоксида пероксокомплекса молибдена, полученного из окиси молибдена и диэтилсульфоксида по вышеописанной методике. Через 7 минут перемешивания в реакторе с мешалкой получают 100 г оксидата с содержанием сульфоксидной серы 0,98% масс. Глубина превращения сульфидов в сульфоксиды 98,0%.

Пример 3. К 100 г дистиллята маловязкой масляной фракции с температурными пределами выкипания 300-400°С, содержащей 0,77% масс. сульфидной серы, прибавляют при 60°С в один прием 3,1 мл 30%-ного водного раствора пероксида водорода. Одновременно в реакционную массу вносят 0,0008 г бис-алкилсульфоксида пероксокомплекса молибдена, полученного из молибденовой кислоты и дибутилсульфоксида по вышеописанной методике. Через 10 минут перемешивания в реакторе с мешалкой получают 100,2 г оксидата с содержанием сульфоксидной серы 0,75% масс. Глубина окисления сульфидов в сульфоксиды 97,8%.

Пример 4. К 100 г дистиллята средневязкой масляной фракции с температурными пределами выкипания 350-420°С и содержащей 0,87% масс. сульфидной серы, прибавляют при 20°С в один прием 3,6 мл 25%-ного водного раствора пероксида водорода. Одновременно в реакционную смесь вносят 0,002 г катализаторного комплекса MoO(O2)2LL', где L и L' - сульфоксиды гексилтиофана. Через 10 минут перемешивания в реакторе с механической мешалкой получают оксидат с содержанием сульфоксидной серы 0,86% масс. Глубина окисления сульфидов в сульфоксиды составляет 98,7%.

Пример 5. К 95,5 г концентрата сульфидов с содержанием сульфидной серы 8,5% масс., выделенного из дизельной фракции арланской нефти с пределами выкипания 260-360°С, прибавляют при комнатной температуре (+25°С) 0,0095 г (0,001% масс.) катализаторного комплекса, полученного из молибденовой кислоты и нефтяных сульфоксидов. Затем по каплям добавляют 32,0 мл 25%-ного водного раствора пероксида водорода. Реакционная смесь при перемешивании саморазогревается и окисление заканчивается за 10 мин. Содержание сульфоксидной серы в окисленном продукте 8,3% масс. Глубина окисления сульфидов в сульфоксиды составляет 98,8%.

Пример 6. К 87,7 г деасфальтизата остаточной масляной фракции, содержащей 1,04% масс. сульфидной серы, при 25°С прибавляют в один прием 3,6 мл 25%-ного водного раствора пероксида водорода. Одновременно в реакционную смесь вносят 0,0008 г (0,0001% масс.) катализаторного комплекса, полученного из окиси молибдена MoO3 и сульфоксида тиофана по методике, описанной выше. Через 12 минут перемешивания получают оксидат с содержанием сульфоксидной серы 1,02% масс. Глубина окисления сульфидов в сульфоксиды составляет 98,1%.

Для сравнения проводили опыты по окислению дизельной фракции арланской нефти, содержащей 2,1% масс. общей и 0,9% масс. сульфидной серы, пероксидом водорода в присутствии пероксокомплексов, полученных из различных соединений молибдена. Результаты опытов приведены в таблице 1. В таблице 2 представлены данные по окислению этого сырья в аналогичных условиях в присутствии бис-алкилсульфоксидных пероксокомплексов молибдена. Как видно из таблиц, при использовании бис-алкилсульфоксидных пероксокомплексов молибдена в качестве катализатора глубина превращения сульфидов в сульфоксиды возрастает на 5-8%, продолжительность окисления уменьшается в 3-5 раза, расход катализатора - в 3 раза, повышается также селективность реакции (уменьшается образование кислых продуктов и сульфонов).

Таблица 1
Окисление сульфидов нефти в дистилляте в присутствии пероксокомплексов молибдена
В табл. 1 и 2 температура 60°С, расход пероксида водорода 1,2 моля на 1 г-атом сульфидной серы.
Пероксокомплексы молибдена получены растворением в пероксиде водородаКоличество пероксокомплекса молибдена, % масс. от сырьяПродолжительность окисления, мин.Содержание сульфоксидной серы в оксидате, % масс.Содержание сульфонов в оксидате, % масс.Кислотность оксидата, г КОН/лГлубина превращения сульфидов в сульфоксиды, %Ацетилацетоната молибдена0,0050400,790,10,387,7Молибдата аммония0,0035400,830,20,492,2Молибденовой кислоты0,0025200,840,20,193,3Нафтената молибдена0,0030200,82отс.0,191,1Окиси молибдена0,0030300,83отс.0,292,2Стеарата молибдена0,0035400,78отс.0,286,6

Таблица 2
Окисление сульфидов нефти в дистилляте в присутствии бис-алкилсульфоксидных пероксокомплексов молибдена
Бис-алкилсульфоксидные пероксокомплексы молибдена получены растворением в пероксиде водородаЛигандообразующий компонентКоличество дисульфоксида пероксокомплекса молибдена, % масс. от сырьяПродолжительность окисления, минСодержание сульфоксидной серы в оксидате, масс.%Содержание сульфонов в оксидате, % масс.Кислотность оксидата, г КОН/лГлубина превращения сульфидов в сульфоксиды, %Ацетилацетоната молибденилатиофан сульфоксид0,001150,87отс.0,296,7Молибдата аммониядиметилсульфоксид0,001100,880,050,197,7Молибденовой кислотыдибутилсульфоксид0,0008150,89отс.0,198,8Нафтената молибденанефтяные сульфоксиды0,000770,88отс.0,198,7Окиси молибденадиэтилсульфоксид0,0008100,870,050,196,7Стеарата молибденанефтяные сульфоксиды0,00170,860,050,295,5

Похожие патенты RU2291859C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ СМЕСИ СУЛЬФОКСИДОВ 2002
  • Нигматуллин В.Р.
  • Шарипов А.Х.
  • Шарипов В.А.
  • Нигматуллин И.Р.
RU2221779C2
СПОСОБ ОКИСЛЕНИЯ СУЛЬФИДОВ НЕФТИ 2002
  • Саматов Р.Р.
  • Шарипов А.Х.
RU2238935C2
СПОСОБ ОЧИСТКИ МАСЛЯНЫХ ФРАКЦИЙ 2003
  • Нигматуллин В.Р.
  • Шарипов В.А.
  • Нигматуллин И.Р.
RU2243986C1
СПОСОБ ПОЛУЧЕНИЯ СУЛЬФОКСИДОВ 2002
  • Саматов Р.Р.
  • Шарипов А.Х.
RU2234498C2
СПОСОБ ОЧИСТКИ МАСЛЯНЫХ ФРАКЦИЙ 2009
  • Нигматуллин Ришат Гаязович
  • Нигматуллин Виль Ришатович
  • Нигматуллин Ильшат Ришатович
  • Костенков Дмитрий Михайлович
  • Надыргулова Гузель Ражаповна
  • Шарипов Айрат Хайдарович
RU2400526C1
СПОСОБ ПОЛУЧЕНИЯ СУЛЬФОКСИДОВ 1995
  • Сайфуллин Н.Р.
  • Нигматуллин Р.Г.
  • Масагутов Р.М.
  • Теляшев Г.Г.
  • Шарипов А.Х.
  • Теляшев Р.Г.
RU2100349C1
СПОСОБ ОБЕССЕРИВАНИЯ СВЕТЛЫХ НЕФТЯНЫХ ДИСТИЛЛЯТОВ 2002
  • Мазгаров А.М.
  • Вильданов А.Ф.
  • Копылов А.Ю.
  • Аслямов И.Р.
RU2235112C1
СПОСОБ ОЧИСТКИ НЕФТИ И ГАЗОКОНДЕНСАТА ОТ СЕРОВОДОРОДА И МЕРКАПТАНОВ 2008
  • Джемилев Усеин Меметович
  • Саматов Риф Мансурович
  • Саматов Руслан Рифович
  • Шарипов Айрат Хайдарович
  • Надыргулова Гузель Ражаповна
RU2418035C2
СПОСОБ ОЧИСТКИ ВТОРИЧНОГО БЕНЗИНА ОТ СЕРНИСТЫХ СОЕДИНЕНИЙ И НЕПРЕДЕЛЬНЫХ УГЛЕВОДОРОДОВ ЖИДКИМ КАТАЛИЗАТОРНЫМ КОМПЛЕКСОМ 2015
  • Зубер Виталий Игоревич
  • Нигматуллин Ришат Гаязович
  • Нигматуллин Виль Ришатович
  • Нигматуллин Ильшат Ришатович
RU2595899C1
СПОСОБ ПОЛУЧЕНИЯ НЕФТЯНЫХ СУЛЬФОКСИДОВ 1986
  • Иванов В.Г.
  • Харлампиди Х.Э.
  • Петухов А.А.
  • Латыпов Р.Ш.
  • Кабацкая И.С.
  • Лебедева Н.М.
  • Лиакумович А.Г.
  • Петров А.Г.
  • Емекеев А.А.
  • Бурмистрова Т.П.
  • Масагутов Р.М.
  • Шарипов А.П.
SU1436459A1

Реферат патента 2007 года СПОСОБ ОКИСЛЕНИЯ СУЛЬФИДОВ НЕФТИ

Изобретение относится к способу окисления сульфидов, содержащихся в нефти, и может быть использовано в нефтехимической и нефтеперерабатывающей промышленности. Окисление осуществляют водным раствором пероксида водорода в присутствии молибденсодержащего катализатора. В качестве катализатора используют бис-алкилсульфоксидные пероксокомплексы молибдена и реакцию проводят при температуре 20-60°С. Изобретение позволяет увеличить выход сульфоксидов, селективность и скорость окисления. 2 табл.

Формула изобретения RU 2 291 859 C1

Способ окисления сульфидов нефти пероксидом водорода в присутствии молибденсодержащего катализатора, отличающийся тем, что в качестве катализатора используют бис-алкилсульфоксидные пероксокомплексы молибдена и реакцию проводят при 20-60°С.

Документы, цитированные в отчете о поиске Патент 2007 года RU2291859C1

СПОСОБ ПОЛУЧЕНИЯ СУЛЬФОКСИДОВ 2002
  • Саматов Р.Р.
  • Шарипов А.Х.
RU2234498C2
Способ очистки легких углеводородных фракций от сернистых соединений 1987
  • Сулейманова Зайтуна Ахтямовна
  • Колычев Владимир Митрофанович
  • Паис Мария Ароновна
  • Масагутов Равгат Мазитович
  • Садриев Нурислам Бадретдинович
  • Лапшин Александр Алексеевич
  • Тучин Владимир Станиславович
  • Шарипов Айрат Хайдарович
  • Файзрахманов Ильшат Салихьянович
  • Попов Юрий Николаевич
SU1549985A1
Манипулятор 1982
  • Сычев Леонид Моисеевич
  • Шевцов Петр Артемьевич
  • Артющенко Владимир Алексеевич
SU1135636A1
US 2003171589 А, 11.09.2003
Устройство защиты от импульсных помех 1986
  • Акчурин Эдуард Александрович
  • Тяжев Анатолий Иванович
SU1425850A1

RU 2 291 859 C1

Авторы

Нигматуллин Виль Ришатович

Шарипов Валерий Айратович

Шарипов Айрат Хайдарович

Нигматуллин Ильшат Ришатович

Мухаметова Регина Рафаиловна

Даты

2007-01-20Публикация

2005-09-20Подача