СПОСОБ ПОЛУЧЕНИЯ АЛЮМИНИЙАЛКИЛОВ Российский патент 2007 года по МПК C07F5/06 C08F4/42 

Описание патента на изобретение RU2295532C1

Изобретение относится к получению алюмоорганических соединений, конкретно алюминийалкилов, которые находят широкое применение в различных отраслях промышленности, в частности, как компоненты металлокомплексных катализаторов, применяемых в процессах получения синтетических каучуков, полиолефинов, высших α-олефинов и жирных спиртов и др.

Известен прямой синтез алюминийтриалкилов из активированного щелочным или щелочноземельным металлом алюминия, водорода и олефина при температурах 100-240°С и давлении 35-240 атм (Патент США №3100786, опубл. 13.08.63).

Недостатком описанного способа является невысокая конверсия алюминия.

Известен способ одновременного получения триалкилалюминия и гидридов алкилалюминия путем взаимодействия алюминия с олефинами и водородом в присутствии моногалогенидов диалкилалюминия. Предварительно осуществляют активацию алюминия триалкилалюминием при соотношении триалкилалюминий: алюминий, равном 10:1 (Заявка Германии №1031792, МПК С 07 F 5/06, опубл. 12.06.58).

Высокое содержание триалкилалюминия по отношению к алюминию в исходной реакционной массе приводит к повышенному содержанию триалкилалюминия по сравнению с содержанием диалкилалюминия в продуктах реакции.

Известен способ получения алкилалюминиевых соединений (Патент СССР №404263, МПК С 08 F 5/06, опубл. 26.10.73). Описанный способ заключается в том, что сплав алюминия с кремнием подвергают взаимодействию с алкилалюминиевым соединением и водородом или с водородом, алкилалюминиевым соединением и олефином при нагревании до 50-200°С под давлением, преимущественно 10-300 кг/см2. Применяемые олефины содержат 2-20 атомов углерода. Предварительно осуществляют механическое или химическое активирование исходного сплава алюминия. В качестве активирующего металлического соединения может быть использован гидрид алюминия, гидрид натрия, хлорид диэтилалюминия, хлорид диизобутилалюминия, триэтилалюминий, триизобутилалюминий и т.п. Алкилалюминиевое соединение, которым может быть, например, триэтилалюминий, водород и олефин, подают в нижнюю или среднюю часть реактора, заполненного сплавом. Металлический остаток может выдавливаться через сито из верхней части реактора подачей алкилалюминиевого соединения и водорода, затем его отделяют от алюминийорганического соединения. Целевой продукт образуется за счет взаимодействия алюминия, олефина и водорода в присутствии триэтилалюминия, который является стартовым веществом в данной реакции.

Недостатком способа является то, что для синтеза используют исходные триалкилалюминий и олефин, имеющие одинаковое число атомов углерода в цепи. Для получения высшего триалкилалюминия, например с числом атомов углерода С520, необходимо вначале синтезировать исходный высший триалкилалюминий, что требует повышенного расхода исходных компонентов.

Известен способ получения высших алюминийалкилов путем взаимодействия алюминия, водорода и этилена (А.С. СССР №237891, МПК С 07 F 5/06, опубл. 17.12.69). Процесс осуществляют в одну стадию при температуре 50-150°С и давлении газовой смеси от 1 до 100 атм с использованием алюминия в виде порошка с развитой сеткой микропор, легированного добавками переходных металлов.

Недостатком описанного способа является невозможность получения индивидуального алюмоорганического соединения.

Наиболее близким к предлагаемому является способ получения алюминийалкилов периодическим или непрерывным методом путем взаимодействия алюминиевой пудры, рециркулирующего алюминийалкила, водорода и олефина в среде углеводородного растворителя, например бензина, гептана или толуола, при температуре 100-140°С и давлении 2-5 МПа (Н.Н.Лебедев «Химия и технология основного органического и нефтехимического синтеза», 4-е изд., М.: Химия, 1988, стр.297-299).

Недостатками такого способа являются высокое содержание триалкилалюминия в продукте реакции, что оказывает отрицательное влияние на активность и стабильность получаемого компонента каталитической системы, используемой в процессах полимеризации сопряженных диенов, а также невысокая конверсия металлического алюминия, что приводит к его повышенному расходу и низкому выходу целевого продукта в процессе одного цикла синтеза.

Задачей изобретения является достижение высокой конверсии алюминия и повышение активности алюминия в процессе синтеза алюминийалкилов.

Поставленная задача решается способом получения алюминийалкилов, включающим взаимодействие алюминия, водорода и олефина или алюминия, водорода, олефина и рециркулирующего алюминийалкила в органическом растворителе при повышенных температуре и давлении, при этом предварительно проводят реакцию алкилирования алюминия при температуре 80-120°С с подачей 2-20 мас.% от расчетного количества олефина, а остальное количество олефина подвергают взаимодействию при температуре 120-200°С.

После подачи 2-20 мас.% от расчетного количества олефина можно выдерживать реакционную массу в течение 0,5-3,0 часов, возможно, в условиях отсутствия водорода.

В качестве органического растворителя при получении алюминийалкилов можно использовать, например, гексансодержащий растворитель, соответствующий требованиям нормативно-технической документации ТУ 0251-120-05766801-2003 «Растворители гексановые» или ТУ 38.1011228-90 «Гексановые растворители (нефрас)», или ГОСТ 8505-80 «Нефрас-С 50/170» или любой другой гексансодержащий растворитель.

Отличием предлагаемого изобретения является предварительное проведение реакции алкилирования алюминия при температуре 80-120°С с подачей 2-20 мас.% от расчетного количества олефина и осуществление взаимодействия остального количества олефина при температуре 120-200°С, использование гексанового растворителя в процессе синтеза алюминийалкилов, а также выдержка реакционной массы в течение 0,5-3,0 часов после подачи 2-20 мас.% от расчетного количества олефина.

Предлагаемый способ получения алюминийалкилов осуществляют следующим образом.

В реактор, снабженный мешалкой и термостатирующей рубашкой, предварительно освобожденный от кислорода и влаги и продутый азотом, подают суспензию алюминиевого порошка в органическом растворителе и, возможно, растворе рециркулирующего алюминийалкила или суспензию алюминиевого порошка в растворе рециркулирующего алюминийалкила, водород и 2-20 мас.% от всего расчетного количества олефина, содержащего, например, от 4 до 6 атомов углерода. Реакционную массу выдерживают при постоянном перемешивании при температуре 80-120°С в течение 0,5-3,0 часов, после чего в реактор подают оставшееся количество олефина, выдерживают реакционную массу при температуре 120-200°С. По окончании синтеза полученные алюминийалкилы выдерживают в течение 0,2-4,0 часов. Давление в реакторе на протяжении всего процесса выдерживают 0,25-6,5 МПа. По завершении процесса реактор охлаждают и отдувают избыток олефина и водорода. Полученные алюминийалкилы выгружают из реактора.

Осуществление предлагаемого способа получения алюминийалкилов иллюстрируют приведенные ниже примеры.

Пример 1

В стальной реактор объемом 0,5 л, снабженный перемешивающим устройством в виде мешалки и термостатирующей рубашкой, предварительно освобожденный от кислорода и влаги и продутый азотом, загружают в виде суспензии 24,5 г алюминиевого порошка марки АСДТ, соответствующего требованиям нормативно-технической документации ТУ 1791-99-019-98, в 22 мл растворителя «Нефрас», соответствующего требованиям нормативно-технической документации ТУ 38.1011228-90, и 42,5 г 48,9%-ного рециркулирующего раствора диизобутилалюминийгидрида в растворителе «Нефрас». Включают мешалку, поднимают температуру в реакторе до 80°С и подают 3,4 г водорода и 17,5 г изобутилена, что составляет 17,24 мас.% от всего расчетного количества. Реакционную массу выдерживают в течение 3 часов при температуре 80°С, после чего поднимают температуру до 120°С и подают в реактор 84 г изобутилена. По окончании синтеза реакционную массу выдерживают в течение 2 часов, после чего реакционную массу охлаждают подачей хладагента в рубашку реактора, полученный продукт, содержащий в основном диизобутилалюминийгидрид (ДИБАГ) и триизобутилалюминий (ТИБА), выгружают из реактора.

Условия проведения процесса и результаты опыта приведены в таблице 1.

Пример 2

Способ получения алюминийалкилов осуществляют также, как описано в примере 1, но в реактор предварительно подают 3,0 г водорода и 20,2 г изобутилена, что составляет 19,86 мас.% от расчетного количества, и выдерживают реакционную массу при температуре 100°С в течение 1 часа, после чего поднимают температуру до 150°С и подают 81,5 г изобутилена. По окончании синтеза реакционную массу выдерживают в течение 2,5 часа. Полученный продукт, содержащий в основном ДИБАГ и ТИБА, после охлаждения выгружают из реактора.

Условия проведения процесса и результаты опыта приведены в таблице 1.

Пример 3

Способ получения алюминийалкилов осуществляют так же, как описано в примере 1, но в реактор предварительно подают 3,0 г водорода и 10 г изобутилена, что составляет 9,95 мас.% от расчетного количества, и выдерживают реакционную массу при температуре 120°С в течение 0,5 часа, после чего поднимают температуру до 200°С и подают 90,5 г изобутилена. По окончании синтеза реакционную массу выдерживают в течение 2,5 часа. Полученный продукт, содержащий в основном ДИБАГ и ТИБА, после охлаждения выгружают из реактора.

Условия проведения процесса и результаты опыта приведены в таблице 1.

Пример 4

Способ получения алюминийалкилов осуществляют так же, как описано в примере 1. В реактор подают в виде суспензии 28 г алюминиевого порошка марки АСДТ в 50 мл растворителя «Нефрас». Включают мешалку, поднимают температуру в реакторе до 110°С и подают 3,4 г водорода и 25 г 2-метил-1-пентена, что составляет 16,45 мас.% от всего расчетного количества. Реакционную массу выдерживают в течение 2 часов при температуре 110°С, после чего поднимают температуру до 160°С и подают в реактор 127 г 2-метил-1-пентена. По окончании синтеза реакционную массу выдерживают в течение 3 часов, после чего реакционную массу охлаждают, полученный продукт, содержащий в основном ди-2-метилпентилалюминийгидрид и три-2-метилпентилалюминий, выгружают из реактора.

Условия проведения процесса и результаты опыта приведены в таблице 1.

Пример 5

Способ получения алюминийалкилов осуществляют так же, как описано в примере 1. В реактор подают в виде суспензии 20 г алюминиевого порошка марки АСДТ в 30 мл растворителя «Нефрас» и 25 г 60%-ного рециркулирующего раствора триэтилалюминия, 5,0 г водорода и 10 г этилена, что составляет 20 мас.% от всего расчетного количества. Реакционную массу выдерживают при температуре 80°С в течение 1 часа, после чего поднимают температуру до 140°С, подают 40 г этилена. По окончании синтеза выдерживают реакционную массу в течение 2 часов, после чего реакционную массу охлаждают, полученный продукт, содержащий в основном триэтилалюминий и диэтилалюминийгидрид, выгружают из реактора.

Условия проведения процесса и результаты опыта приведены в таблице 1.

Пример 6

Способ получения алюминийалкилов осуществляют так же, как описано в примере 1. В реактор подают в виде суспензии 23 г алюминиевого порошка марки АСДТ в 20 мл растворителя «Нефрас» и 8,8 г 60%-ного рециркулирующего раствора диизобутилалюминийгидрида, 3,2 г водорода и 1,9 г изобутилена, что составляет 2 мас.% от всего расчетного количества. Реакционную массу выдерживают при температуре 100°С в течение 1,5 часа, после чего поднимают температуру до 150°С, подают 93 г изобутилена. По окончании синтеза выдерживают реакционную массу в течение 1,5 часа, после чего реакционную массу охлаждают, полученный продукт, содержащий в основном ДИБАГ и ТИБА, выгружают из реактора.

Условия проведения процесса и результаты опыта приведены в таблице 1.

Пример 7

В стальной реактор объемом 0,5 л, снабженный перемешивающим устройством в виде мешалки и термостатирующей рубашкой, предварительно освобожденный от кислорода и влаги и продутый азотом, загружают в виде суспензии 32,5 г алюминиевого порошка марки АСДТ, соответствующего требованиям нормативно-технической документации ТУ 1791-99-019-98, в 60 мл растворителя «Нефрас», соответствующего требованиям нормативно-технической документации ТУ 38.1011228-90, и 4,5 г водорода. Включают мешалку, поднимают температуру в реакторе до 110°С и подают 27,4 г изобутилена, что составляет 20 мас.% от всего расчетного количества. Реакционную массу выдерживают в течение 3 часов при температуре 110°С, после чего поднимают температуру до 170°С и подают в реактор 110 г изобутилена. По окончании синтеза реакционную массу выдерживают в течение 2 часов, после чего реакционную массу охлаждают подачей хладагента в рубашку реактора, полученный продукт, содержащий в основном диизобутилалюминийгидрид (ДИБАГ) и триизобутилалюминий (ТИБА), выгружают из реактора.

Условия проведения процесса и результаты опыта приведены в таблице 1.

Пример 8

Способ получения алюминийалкилов осуществляют так же, как описано в примере 7, но в реактор предварительно подают 21,9 г изобутилена, что составляет 16,0 мас.% от расчетного количества, и выдерживают реакционную массу при температуре 115°С в течение 2,5 часа, после чего поднимают температуру до 180°С и подают 115,1 г изобутилена. По окончании синтеза реакционную массу выдерживают в течение 2,5 часа. Полученный продукт, содержащий в основном ДИБАГ и ТИБА, после охлаждения выгружают из реактора.

Условия проведения процесса и результаты опыта приведены в таблице 1.

Пример 9

В производственных условиях в аппарат с мешалкой объемом 2 м3 подают суспензию алюминиевого порошка марки АСДТ, содержащую 90 кг алюминия и 88 кг растворителя «Нефрас». Передавливают в реактор 145 кг 60%-ного раствора ДИБАГ, 2 кг водорода (до давления 1,5 МПа) и подают 80 кг изобутилена, что составляет 19,66 мас.% от всего расчетного количества. Реакционную массу при температуре 90°С выдерживают при перемешивании в течение 2 часов. Далее в реакторе повышают температуру до 150°С и при постоянном перемешивании в течение 2,5 часа дозируют 327 кг изобутилена и 12 кг водорода. По окончании синтеза реакционную массу выдерживают в течение 1 часа, после чего охлаждают до 80°С. Проводят отдувку избыточных количеств изобутилена и водорода через масляный сепаратор. После охлаждения полученный продукт, содержащий в основном ДИБАГ и ТИБА, выгружают из реактора.

Условия проведения процесса и результаты опыта приведены в таблице 1.

Примеры 10 и 11

Способ получения алюминийалкилов осуществляют так же, как описано в примере 7. При температуре 80°С и 110°С подают 41 кг и 60 кг изобутилена, что составляет 10,07 мас.% и 14,74 мас.% соответственно. В таких условиях при перемешивании выдерживают реакционную массу 2 и 3 часа, подают водород до давления 1,5 МПа и повышают температуру до 140°С и 160°С соответственно. Далее при перемешивании дозируют 366 кг и 347 кг изобутилена, 13,6 кг и 15 кг водорода. По окончании синтеза реакционную массу выдерживают при работающей мешалке еще 1-4 часа. Захолаживают содержимое реактора до 70-80°С, проводят отдувку избыточных количеств изобутилена и водорода через масляный сепаратор. После охлаждения полученный продукт, содержащий в основном ДИБАГ и ТИБА, выгружают из реактора.

Условия проведения процесса и результаты опыта приведены в таблице 1.

Пример 12

В осушенную и продутую азотом колбу при комнатной температуре вводят 24,3 г 5%-ного гексанового раствора неодеканоата неодима (НН) (1,85 ммоль), 18,2 г раствора ДИБАГ (16,7 ммоль), полученного по примеру 2 и разбавленного до 13 мас.%(по ДИБАГ), и 0,63 г пиперилена (9,25 ммоль), добавляют 33 г 10%-ного гексанового раствора ТИБА (16,7 ммоль) и 2 г 15%-ного гексанового раствора этилалюминийсесквихлорида (ЭАСХ) (2,4 ммоль).

В автоклав объемом 5 л загружают 1470 г растворителя «Нефрас», 200 г бутадиена и перемешивают. При температуре 35°С вводят в автоклав 15,6 г раствора каталитического комплекса, содержащего 0,37 ммоль неодеканоата неодима. Процесс полимеризации бутадиена проводят при температуре 60°С в течение 1 часа. Полученный полимеризат стабилизируют и выделяют водной дегазацией, сушат в сушильном шкафу при температуре 60-70°С в атмосфере азота. Конверсия мономера составляет 98%.

Полученный каучук анализируют на микроструктуру, молекулярно-массовое распределение (ММР), содержание гель-фракции и физико-механические испытания резиновой смеси. Полученные данные приведены в таблице 2.

Пример 13

По примеру 12 при приготовлении каталитического комплекса используют разбавленный до 11,5 мас.% раствор ДИБАГ, полученный по примеру 9.

В автоклав, содержащий 1670 г шихты, полученной смешением 1470 г растворителя «Нефрас» и 200 г бутадиена, вводят при температуре 35°С раствор каталитического комплекса. Проводят полимеризацию при температуре 60°С, полимеризат стабилизируют, выделяют водной дегазацией и сушат.

Полученные данные приведены в таблице 2.

Пример 14

По примеру 12 в колбу при комнатной температуре вводят 24,3 г 5%-ного гексанового раствора неодеканоата неодима (1,85 ммоль), 15,8 г раствора ДИБАГ (16,7 ммоль), полученного по примеру 3 и разбавленного до 15 мас.% (по ДИБАГ), и 0,63 г пиперилена (9,25 ммоль), добавляют 19 г 10%-ного гексанового раствора триэтилалюминия (16,7 ммоль), полученного по примеру 5, и 2 г 15%-ного гексанового раствора ЭАСХ (2,4 ммоль).

Проводят процесс полимеризации бутадиена. В автоклав вводят 12%-ный раствор бутадиена в растворителе «Нефрас» и каталитический комплекс, содержащий 0,37 ммоль неодеканоата неодима.

Полученные данные приведены в таблице 2.

Как видно из приведенных примеров, предлагаемый способ позволяет достичь высокой конверсии алюминия и повысить активность алюминия в процессе синтеза алюминийалкилов.

Таблица 1ПоказательПримеры1234567891011Предварительная реакция алкилирования алюминияТемпература,°С80100120110801001101159080110Время выдержки, час310,5211,53,02,5223Расход олефина, мас.%17,2419,869,9516,4520,02,020,016,019,6610,0714,74Завершение реакции алкилирования алюминияТемпература,°С120150200160140150170180150140160Результаты опытаКонверсия алюминия, %93,091,694,379,890,492,882,384,186,485,293,5Массовая доля активного алюминия, %15,014,915,010,817,816,414,514,714,514,414,8Алкилалюминийгидрид, мас.%76,977,178,072,91,684,074,175,375,173,776,8Алкилалюминия, мас.%2,42,11,64,173,23,33,52,62,33,51,7

Таблица 2ПоказательПример 12Пример 13Пример 14Конверсия мономера, %98100100Вязкость по Муни, ML 1+4 (100°С)454646Содержание 1,4-цис звеньев, %989898,5Содержание гель-фракции, мас.%0,050,040,02Молекулярно-массовое распределениеMn 10-3175166165Mw 10-3429425411Mz 10-3921928855Полидисперсность2,42,62,5Физико-механические свойства резиновой смесиНапряжение при удлинении 300%, МПа10,19,810,3Прочность при растяжении, МПа22,521,922,2Относительное удлинение при разрыве, %510526500

Похожие патенты RU2295532C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ И ОЧИСТКИ АЛЮМИНИЙАЛКИЛОВ 2011
  • Шпанцева Людмила Васильевна
  • Аксенов Виктор Иванович
  • Чибизов Сергей Васильевич
  • Тюленцева Людмила Евгеньевна
  • Комаров Юрий Андреевич
  • Иванченко Нина Ивановна
RU2460733C1
Способ получения триалкилалюминия 2021
  • Нестеров Олег Николаевич
  • Сахабутдинов Анас Гаптынурович
  • Гильмуллин Ринат Раисович
  • Гимадиев Каусар Сабирович
  • Галимов Рустам Хаевич
  • Шарифуллин Рафаэль Ривхатович
  • Саяхов Марат Дамирович
  • Березкина Марина Васильевна
  • Ахметов Фарид Хадинович
RU2779851C1
СПОСОБ ПОЛУЧЕНИЯ ЦИС-1,4-(СО)ПОЛИМЕРОВ СОПРЯЖЕННЫХ ДИЕНОВ И (СО)ПОЛИМЕР, ПОЛУЧЕННЫЙ ЭТИМ СПОСОБОМ 2011
  • Тихомирова Ирина Николаевна
  • Кочнев Андрей Иванович
  • Фоменкова Ксения Петровна
  • Авзалова Альбина Раисовна
  • Аксенов Виктор Иванович
RU2467019C1
СПОСОБ ПОЛУЧЕНИЯ КАТАЛИТИЧЕСКОГО КОМПОНЕНТА, КАТАЛИТИЧЕСКИЙ КОМПОНЕНТ, СПОСОБ ПОЛУЧЕНИЯ КАТАЛИТИЧЕСКОГО КОМПЛЕКСА, КАТАЛИТИЧЕСКИЙ КОМПЛЕКС, СПОСОБ ПОЛУЧЕНИЯ (СО)ПОЛИМЕРОВ БУТАДИЕНА, (СО)ПОЛИМЕР БУТАДИЕНА 2004
  • Гусев А.В.
  • Коноваленко Н.А.
  • Конюшенко В.Д.
  • Разумов В.В.
  • Золотарев В.Л.
  • Привалов В.А.
  • Поляков Д.К.
  • Рачинский А.В.
  • Харитонов А.Г.
  • Шевченко А.Е.
  • Тарасов В.П.
  • Гудков В.В.
  • Деев В.Н.
  • Черемухина В.И.
RU2248845C1
Способ получения несольватированных алкилалюмоксанов 1976
  • Корнеев Николай Николаевич
  • Лелюхина Юлия Леонидовна
  • Пономаренко Владимир Иванович
  • Ирхин Борис Леонидович
  • Куриленко Геннадий Николаевич
  • Баженов Юрий Петрович
  • Левина Ольга Геннадьевна
SU891675A1
СПОСОБ ПОЛУЧЕНИЯ КАТАЛИЗАТОРА (СО)ПОЛИМЕРИЗАЦИИ БУТАДИЕНА 2010
  • Бодрова Вера Сергеевна
  • Бубнова Светлана Васильевна
  • Васильев Валентин Александрович
  • Дроздов Борис Трофимович
  • Пассова Светлана Соломоновна
  • Андрианова Людмила Германовна
  • Сендерская Евгения Евгеньевна
RU2426748C1
СПОСОБ ПОЛИМЕРИЗАЦИИ ИЗОПРЕНА 1999
  • Щербань Г.Т.
  • Тульчинский Э.А.
  • Милославский Г.Ю.
  • Сахабутдинов А.Г.
  • Силитрин В.В.
  • Шарифуллин Р.Г.
  • Шаманский В.А.
  • Зайдуллин А.А.
RU2167165C1
СПОСОБ ПОЛУЧЕНИЯ ПОЛИМЕРОВ И СОПОЛИМЕРОВ СОПРЯЖЕННЫХ ДИЕНОВ (ВАРИАНТЫ) 2009
  • Бусыгин Владимир Михайлович
  • Гильманов Хамит Хамисович
  • Гильмутдинов Наиль Рахматуллович
  • Ахметов Ильдар Гумерович
  • Салахов Ильдар Ильгизович
  • Ахметова Диляра Равилевна
  • Вагизов Айдар Мизхатович
  • Сахабутдинов Анас Гаптынурович
  • Амирханов Ахтям Талипович
  • Беланогов Игорь Анатольевич
  • Мисбахов Ильяс Рафикович
RU2422468C1
СПОСОБ ПОЛУЧЕНИЯ ГИДРИДА КРЕМНИЯ 1993
  • Корнеев Н.Н.
  • Чернышев Е.А.
  • Белик Г.И.
  • Белов Е.П.
  • Говоров Н.Н.
  • Каримова Н.Р.
  • Лебедев Е.Н.
  • Клещевникова С.И.
  • Комаленкова Н.Г.
  • Разоренов Ю.В.
  • Юшкевич И.А.
RU2085487C1
СПОСОБ ПОЛУЧЕНИЯ ЦИС-1,4-(СО)ПОЛИМЕРОВ СОПРЯЖЕННЫХ ДИЕНОВ И (СО)ПОЛИМЕР, ПОЛУЧЕННЫЙ ЭТИМ СПОСОБОМ 2002
  • Гусев А.В.
  • Коноваленко Н.А.
  • Тихомирова И.Н.
  • Конюшенко В.Д.
  • Золотарев В.Л.
  • Разумов В.В.
  • Привалов В.А.
  • Рачинский А.В.
RU2203289C1

Реферат патента 2007 года СПОСОБ ПОЛУЧЕНИЯ АЛЮМИНИЙАЛКИЛОВ

Изобретение относится к улучшенному способу получения алюмоорганических соединений, конкретно алюминийалкилов, которые находят широкое применение в различных отраслях промышленности, в частности, как компоненты металлокомплексных катализаторов, применяемых в процессах получения синтетических каучуков, полиолефинов, высших α-олефинов и жирных спиртов и др. Технический результат - достижение высокой конверсии алюминия и повышение активности алюминия в процессе синтеза алюминийалкилов. Способ осуществляют путем взаимодействия алюминия, водорода и олефина или алюминия, водорода, олефина и рециркулирующего алюминийалкила в органическом растворителе при повышенных температуре и давлении, при этом предварительно проводят реакцию алкилирования алюминия при температуре 80-120°С с подачей 2-20 мас.% от расчетного количества олефина, а остальное количество олефина подвергают взаимодействию при температуре 120-200°С. 2 з.п. ф-лы, 2 табл.

Формула изобретения RU 2 295 532 C1

1. Способ получения алюминийалкилов путем взаимодействия алюминия, водорода и олефина или алюминия, водорода, олефина и рециркулирующего алюминийалкила в органическом растворителе при повышенных температуре и давлении, отличающийся тем, что предварительно проводят реакцию алкилирования алюминия при температуре 80-120°С с подачей 2-20 мас.% от расчетного количества олефина, а остальное количество олефина подвергают взаимодействию при температуре 120-200°С.2. Способ получения алюминийалкилов по п.1, отличающийся тем, что после подачи 2-20 мас.% от расчетного количества олефина реакционную массу выдерживают в течение 0,5-3,0 ч.3. Способ получения алюминийалкилов по п.1, отличающийся тем, что в качестве органического растворителя используют гексансодержащий растворитель.

Документы, цитированные в отчете о поиске Патент 2007 года RU2295532C1

Способ получения триалкилалюми-Ния 1974
  • Карл Хайнц Мюллер
  • Ханс-Юрген Хуберт
SU795483A3
В П Т БДО:Я^^Г[зуп- <} • J Е И 1 ..- i 0
  • Авторы Изобретени Витель Иностранцы Еиичи Ичики, Казуо Иида, Ацуро Мацуи Хидекими Кадокура Япони
SU404263A1
US 3207773 А, 21.09.1965
US 3100786 А, 13.08.1963.

RU 2 295 532 C1

Авторы

Бусыгин Владимир Михайлович

Гильманов Хамит Хамисович

Гильмутдинов Наиль Рахматуллович

Сахабутдинов Анас Гаптынурович

Сафин Дамир Хасанович

Бурганов Табриз Гильмутдинович

Нестеров Олег Николаевич

Амирханов Ахтям Талипович

Паймуллин Сергей Тимофеевич

Даты

2007-03-20Публикация

2005-08-12Подача