СПОСОБ ОБРАБОТКИ ЖИДКОГО МЕТАЛЛА С ПОМОЩЬЮ ГАЗЛИФТА Российский патент 2007 года по МПК C21C1/00 C21C1/02 

Описание патента на изобретение RU2307170C1

Изобретение относится к черной металлургии, конкретнее к внепечной обработке металла в ковше. Может быть использовано также при плавке металла в индукционных печах и других агрегатах.

Наиболее близким по технической сущности является способ обработки жидкого металла с помощью газлифта, включающий подачу в газлифт транспортирующего газа, погружение газлифта в ковш с металлом, введение в металл в ходе обработки смеси шлакообразующих и раскисляющих материалов (С.П.Ефименко и др. «Внепечное рафинирование металла в газлифтах» М.: Металлургия, 1986. 264 с.). Близким по технической сущности является также способ обработки жидкого металла с помощью газлифта по А.С. №825648 «Способ десульфурации чугуна» по заявке №2427854/22-02 от 21.12.76.

Недостатком известных способов является то, что они не обеспечивают проведение восстановительной дефосфорации расплава нержавеющей стали в ковше, а удалить фосфор иначе при переплаве отходов нержавеющей стали в массовом производстве невозможно. Приходится при выплавке нержавеющей стали ограничивать долю в шихте высокохромистых отходов (загрязненных обычно фосфором), используя вместо них свежие легирующие материалы (хром, никель, марганец), что сильно повышает себестоимость стали. Кроме этого в известных способах при выплавке сталей, легированных азотом, не обеспечивается введение в расплав в заданном количестве азота, содержащегося в транспортирующем газе. Для ввода азота в сталь приходится использовать дорогостоящие азотсодержащие ферросплавы.

Задачей совершенствования известного способа является обеспечение восстановительной дефосфорации расплава нержавеющей стали в ковше за счет обработки металла сильнораскисленным, агрессивным шлаком с предотвращением взаимодействия его с футеровкой ковша и с воздухом. При этом в случае производства нержавеющей стали, легированной азотом, нужно обеспечить ввод в расплав в заданном количестве азота из транспортирующего газа.

Технический результат при использовании изобретения заключается в том, что оно обеспечивает восстановительную дефосфорацию расплава нержавеющей стали в ковше за счет обработки металла сильнораскисленным шлаком, агрессивным по отношению к огнеупорам, с предотвращением взаимодействия этого шлака с воздухом и с футеровкой ковша. Шлак во время обработки собирается в камере с водоохлаждаемыми стенками, а после обработки удаляется. Обеспечивается также ввод в расплав в заданном количестве азота, содержащегося в транспортирующем газе.

Это достигается за счет того, что в известном способе, включающем подачу в газлифт транспортирующего газа, погружение газлифта в ковш с металлом, введение в металл в ходе обработки смеси шлакообразующих и раскисляющих материалов, в качестве вводимой в металл смеси используют смесь, содержащую фторид кальция и кальцийсодержащие раскисляющие материалы при соотношении Ф:М=(1÷100), где Ф - масса вводимого фторида кальция, М - масса кальция во всех вводимых раскисляющих материалах. При этом в ходе обработки исключают подсос воздуха внутрь газлифта путем поддержания в нем избыточного давления в интервале 10÷10000 Па. После окончания ввода смеси образовавшийся в водоохлаждаемой камере газлифта шлак отделяют от металла путем замораживания шлака введением в него охладителя, например извести, и извлечения газлифта из металла вместе с затвердевшим шлаком. Для ввода в расплав азота из транспортирующего газа в качестве такого газа используют азот или его смесь с инертным газом с долей азота от ≤1 до (Nзадан/N1атм)2, где Nзадан - заданная концентрация азота в стали, %, а N1атм - стандартная растворимость азота в стали, %.

Диапазон значений величины соотношения Ф:М, где Ф - масса вводимого в металл фторида кальция, а М - масса кальция, во всех вводимых раскисляющих материалах в пределах от 1 до 100 объясняется закономерностями поведения кальция при обработке. При слишком большой величине этого соотношения концентрация кальция, содержащегося в раскисляющих материалах, в шлаке будет недостаточной для обеспечения необходимой степени дефосфорации расплава. Основная задача обработки не будет решена. При слишком малой величине этого соотношения кальция, содержащегося в раскисляющих материалах, в смеси будет слишком много, и фторида кальция окажется недостаточно для того, чтобы быстро растворить кальций, перевести его в шлак. Это может приводить к вскипаниям скоплений кальция - к нарушениям нормального режима обработки.

Величину соотношения Ф:М устанавливают в обратной зависимости от необходимой степени дефосфорации расплава.

Диапазон значений величины избыточного давления в камере в ходе обработки металла в пределах от 10 до 10000 Па объясняется закономерностями взаимодействия кальция с кислородом атмосферы в рабочем пространстве газлифта. При избыточном давлении в камере в ходе обработки металла менее 10 Па воздух, который может в некоторых недостаточно герметичных местах проникать в камеру, будет окислять активный кальций в шлаке, в результате чего необходимая степень дефосфорации расплава достигнута не будет. При избыточном давлении в камере в ходе обработки более 10000 Па из-за снижения уровня металла в патрубках расход транспортирующего газа для сохранения необходимой скорости циркуляции металла через газлифт нужно будет увеличить. Это приведет к увеличению затрат на обработку.

Величину избыточного давления в камере в ходе обработки металла устанавливают в прямой зависимости от необходимой степени дефосфорации расплава.

Диапазон значений величины доли азота в его смеси с инертным газом в пределах от ≤1 до (Nзадан/N1атм)2 объясняется закономерностями взаимодействия азота с металлическим расплавом. При величине доли азота в смеси менее (Nзадан/N1атм)2 заданная концентрация азота в стали не может быть достигнута за счет продувки металла в газлифте даже при максимально возможной ее интенсивности. Часть необходимого азота нужно в этом случае вводить дорогостоящими азотсодержащими ферросплавами. При увеличении доли азота в смеси до величины ≤1 концентрация азота в стали может быть доведена до заданной даже при интенсивности продувки, которая ниже максимально возможной для данной конструкции газлифта.

Величину доли азота в его смеси с инертным газом устанавливают в обратной зависимости от интенсивности продувки, обеспечивающей нормальную работу газлифта используемой конструкции.

Ниже дан вариант осуществления изобретения, не исключающий другие варианты в пределах формулы изобретения.

Пример (плавка нержавеющей стали марки 08Х18Н10Т по классической двухшлаковой технологии, ковш вместимостью 25 т).

Решение о применении после выпуска плавки обработки жидкого металла в ковше с помощью газлифта принимается после получения анализа первой пробы в случае обнаружения недопустимо высокого содержания фосфора. Плавка в этом случае выпускается с температурой на 20-30 градусов выше обычной. Далее ковш с металлом устанавливают на специально оборудованный стенд. Газлифт с помощью крана погружают в металл. Предварительно торцы патрубков газлифта защищают от попадания в них ковшевого шлака вставками из стального листа. Подачу транспортирующего газа (аргона) включают до погружения.

Убедившись в установлении необходимого давления в камере (10÷10000 Па) и нормального режима циркуляции металла через газлифт, включают подачу в транспортирующий газ шлакообразующей и раскисляющей смеси (500 кг) с соотношением Ф:М=50. При этом в ходе обработки для исключения подсоса воздуха внутрь газлифта поддерживают в нем избыточное давление около 500 Па. Для ввода в расплав азота аргон в транспортирующем газе заменяют смесью аргона с азотом с долей азота 0,7.

Через 10-15 минут подачу смеси заканчивают, и через затвор в камеру загружают охладитель - известь. Шлак затвердевает, после чего газлифт вынимают из ковша. Металл при этом через патрубки сливается в ковш, а затвердевший шлак газлифта остается в камере. Далее ковш передается на участок разливки стали, а газлифт - на специальный стенд для удаления шлака и подготовки к следующей обработке.

В нижеприведенной таблице показаны варианты осуществления изобретения для условий рассматриваемого примера с различными технологическими параметрами.

ТаблицаПараметрыВарианты осуществления изобретения12345Степень дефосфорации расплава нержавеющей стали в ковше, %8050403010Величина соотношения Ф:М, где Ф - масса вводимого в металл фторида кальция, М - масса кальция во всех вводимых раскисляющих материалах0,5150100150% фторида кальция во вводимой в металл смеси335098,0499,0199,34% кальция, содержащегося в раскисляющих материалах, во вводимой в металл смеси67501,960,990,66Давление в камере газлифта, Па15000100005000105

Первый вариант осуществления изобретения (см. таблицу) неприемлем, так как из-за слишком малого соотношения Ф:М во вводимой в металл смеси процент кальция, содержащегося в раскисляющих материалах, в ней слишком велик. Это приводит к недостатку фторида кальция для того, чтобы быстро растворять кальций, переводить его в шлак. Это вызывает вскипания скоплений кальция, нарушает нормальный режим обработки. Давление в камере газлифта приходится повышать, а это дополнительно мешает нормальной работе газлифта.

Пятый вариант осуществления изобретения также неприемлем, так как в нем из-за слишком большого соотношения Ф:М во вводимой в металл смеси процент кальция, содержащегося в раскисляющих материалах, в ней слишком мал, недостаточен для получения нужной степени дефосфорации.

В оптимальных вариантах 2-4 изобретение может быть осуществлено успешно.

Применение изобретения может обеспечить удаление из расплава до 50% фосфора.

Похожие патенты RU2307170C1

название год авторы номер документа
ГАЗЛИФТ ДЛЯ ОБРАБОТКИ ЖИДКОГО МЕТАЛЛА 2006
  • Стомахин Александр Яковлевич
  • Фоменко Алексей Петрович
  • Фоменко Александр Петрович
  • Дмитриев Константин Юрьевич
  • Гальченко Александр Валерьевич
  • Кнохин Валерий Георгиевич
  • Лапченко Леонтий Петрович
  • Файбисович Владимир Львович
  • Семин Александр Евгеньевич
  • Косырев Константин Львович
  • Севостьянюк Ярослав Владимирович
RU2310689C1
СПОСОБ РАФИНИРОВАНИЯ СПЛАВОВ ЖЕЛЕЗА С БОЛЕЕ ЛЕГКО ОКИСЛЯЮЩИМИСЯ ЭЛЕМЕНТАМИ 2002
  • Стомахин А.Я.
  • Косырев К.Л.
  • Семин А.Е.
RU2224028C1
УСТРОЙСТВО ДЛЯ ОБРАБОТКИ МЕТАЛЛИЧЕСКОГО РАСПЛАВА РАФИНИРУЮЩИМ ШЛАКОМ 2012
  • Стомахин Александр Яковлевич
  • Стукалин Станислав Викторович
  • Одинцов Алексей Александрович
  • Лысенкова Елена Валерьевна
  • Горячев Кирилл Вячеславович
  • Семин Александр Евгеньевич
  • Косырев Константин Львович
RU2476602C1
СПОСОБ ВЫПЛАВКИ СТАЛИ В ПОДОВОМ СТАЛЕПЛАВИЛЬНОМ АГРЕГАТЕ 2005
  • Жульев Сергей Иванович
  • Фоменко Алексей Петрович
  • Гузенков Сергей Александрович
RU2285726C1
СПОСОБ ПРОИЗВОДСТВА НИЗКОКРЕМНИСТОЙ СТАЛИ 2008
  • Луценко Андрей Николаевич
  • Бенедечук Игорь Борисович
  • Ерошкин Сергей Борисович
  • Водовозова Галина Сергеевна
  • Балдаев Борис Яковлевич
  • Прудов Константин Эдуардович
  • Кузнецов Сергей Николаевич
  • Трифонова Марина Ивановна
RU2353667C1
СПОСОБ РАФИНИРОВАНИЯ РЕЛЬСОВОЙ СТАЛИ В ПЕЧЬ-КОВШЕ 2010
  • Мохов Глеб Владимирович
  • Александров Игорь Викторович
  • Козырев Николай Анатольевич
  • Бойков Дмитрий Владимирович
  • Захарова Татьяна Петровна
  • Корнева Лариса Викторовна
  • Могильный Виктор Васильевич
RU2425154C1
СПОСОБ ВЫПЛАВКИ СТАЛИ В КОНВЕРТЕРЕ С КОМБИНИРОВАННОЙ ПРОДУВКОЙ 2019
  • Титов Александр Васильевич
  • Тюленев Евгений Николаевич
  • Зернов Евгений Евгеньевич
  • Возчиков Андрей Петрович
  • Борисова Татьяна Викторовна
  • Демидов Константин Николаевич
  • Носенко Владимир Игоревич
  • Филатов Александр Николаевич
RU2729692C1
Способ производства низкокремнистой стали 2023
  • Шеховцов Евгений Валентинович
  • Ремиго Сергей Александрович
  • Кромм Владимир Викторович
  • Корогодский Алексей Юрьевич
  • Ковязин Игорь Владимирович
  • Ткачев Андрей Сергеевич
RU2818526C1
СПОСОБ ПРОИЗВОДСТВА НИЗКОКРЕМНИСТОЙ СТАЛИ 2013
  • Никонов Сергей Викторович
  • Жиронкин Михаил Валерьевич
  • Козлов Алексей Евгеньевич
  • Краснов Алексей Владимирович
  • Петенков Илья Геннадьевич
  • Салиханов Павел Алексеевич
RU2533263C1
Способ рафинирования подшипниковой стали 1987
  • Денисенко Владимир Петрович
  • Максутов Рашат Фасхеевич
  • Чернышев Евгений Яковлевич
  • Черный Алексей Владимирович
  • Иванов Александр Владимирович
  • Волощук Николай Андреевич
  • Ефремов Виктор Георгиевич
  • Мельников Юрий Яковлевич
SU1520109A1

Реферат патента 2007 года СПОСОБ ОБРАБОТКИ ЖИДКОГО МЕТАЛЛА С ПОМОЩЬЮ ГАЗЛИФТА

Изобретение относится к черной металлургии, конкретнее к внепечной обработке металла в ковше. Способ включает подачу в патрубок газлифта азота или его смеси с инертным газом. Затем погружают в ковш с металлом всасывающий и сливной патрубки газлифта. Вводят в металл смесь фторида кальция и кальцийсодержащих раскисляющих материалов в определенном соотношении. После ввода смеси в металл в газлифт подают охладитель на шлак, образовавшийся в нем. Извлекают газлифт из металла с затвердевшим шлаком. В ходе обработки исключают подсос воздуха внутрь газлифта путем поддержания в нем избыточного давления в интервале 10÷10000 Па. Использование изобретения обеспечивает восстановительную дефосфорацию расплава стали в ковше за счет обработки его сильнодействующим, агрессивным шлаком с предотвращением взаимодействия этого шлака с футеровкой ковша и с воздухом. 2 з.п. ф-лы, 1 табл.

Формула изобретения RU 2 307 170 C1

1. Способ обработки жидкого металла в ковше с помощью газлифта, включающий подачу в газлифт транспортирующего газа, погружение в ковш с металлом всасывающего и сливного патрубков газлифта, введение в металл в ходе обработки смеси шлакообразующих и раскисляющих материалов, отличающийся тем, что в качестве смеси шлакообразующих и раскисляющих материалов вводят фторид кальция и кальцийсодержащие раскисляющие материалы в соотношении Ф:М=(1÷100), где Ф - масса вводимого фторида кальция, М - масса кальция в кальцийсодержащих раскисляющих материалах, после окончания ввода смеси в металл в газлифт подают охладитель на шлак, образовавшийся в нем, и извлекают газлифт из металла вместе с затвердевшим шлаком.2. Способ по п.1, отличающийся тем, что в ходе обработки исключают подсос воздуха внутрь газлифта путем поддержании в нем избыточного давления в интервале 10÷10000 Па.3. Способ по п.1, отличающийся тем, что в качестве транспортирующего газа используют азот или его смесь с инертным газом с долей азота от ≤1 до (Nзадан/N1aтм)2, где Nзадан - заданная концентрация азота в стали, %, N1атм - стандартная растворимость азота в стали, %.

Документы, цитированные в отчете о поиске Патент 2007 года RU2307170C1

Способ десульфурации чугуна 1976
  • Мачикин Виктор Иванович
  • Чернета Юрий Григорьевич
  • Левин Михаил Зельманович
  • Лифенко Николай Трофимович
  • Мозговой Александр Андреевич
  • Лифар Виталий Васильевич
  • Черзер Анатолий Николаевич
SU825648A1
Газлифт для рафинирования чугуна вКОВшЕ 1979
  • Мачикин Виктор Иванович
  • Лифенко Николай Трофимович
  • Залевский Михаил Алексеевич
  • Ефименко Сергей Петрович
  • Житник Георгий Гаврилович
  • Пилюшенко Виталий Лаврентьевич
  • Чеканов Владимир Сергеевич
  • Гурвич Владимир Григорьевич
SU836116A1
Способ обработки чугуна 1986
  • Лифенко Николай Трофимович
  • Пилюшенко Виталий Лаврентьевич
  • Зборщик Александр Михайлович
  • Черкашин Игорь Владимирович
  • Курганов Виктор Александрович
  • Лесовой Виктор Васильевич
  • Стец Павел Денисович
  • Гостев Анатолий Александрович
  • Данченко Иван Николаевич
  • Апаев Владимир Иванович
SU1435610A1
ГАЗЛИФТНОЕ УСТРОЙСТВО 1992
  • Мазаник В.Н.
  • Голубев И.Н.
  • Фролов А.А.
  • Окунев А.И.
  • Васильев М.Г.
  • Бездежский Г.Н.
  • Ранский О.Б.
  • Хуснуллин А.С.
RU2016072C1
JP 11117011 А, 27.04.1999
JP 4103705 А, 06.04.1992.

RU 2 307 170 C1

Авторы

Стомахин Александр Яковлевич

Фоменко Алексей Петрович

Фоменко Александр Петрович

Дмитриев Константин Юрьевич

Гальченко Александр Валерьевич

Кнохин Валерий Георгиевич

Лапченко Леонтий Петрович

Файбисович Владимир Львович

Семин Александр Евгеньевич

Косырев Константин Львович

Севостьянюк Ярослав Владимирович

Даты

2007-09-27Публикация

2006-04-03Подача