СПОСОБ РАЗДЕЛЕНИЯ ЦИРКОНИЯ И ГАФНИЯ Российский патент 2007 года по МПК C22B34/14 B01D9/04 

Описание патента на изобретение RU2307182C2

Изобретение относится к технологии получения ядерно-чистого циркония, конкретно к технологии очистки циркония от гафния, и может быть использовано на рудоперерабатывающих предприятиях и в атомной промышленности.

Проблема разделения гафния и циркония осложнена тем, что химические свойства их схожи из-за сходства в строении атомов. Для их разделения применяют сложную многоступенчатую очистку: кристаллизацию, ионный обмен, многократное осаждение, экстракцию.

Известен способ разделения циркония и гафния с помощью ионного обмена [Каганович С.Я., «Цирконий и гафний», М., 1962]. Для этого в колонке, заполненной смолой, полностью сорбируют оба металла. Затем их селективно элюируют. Гафний, имеющий меньшую склонность к комплексообразованию, вымывается в последнюю очередь. При использовании анионообменных смол сорбцию ведут из сильнокислых растворов Zr и Hf в плавиковой или серной кислотах. Ими же элюируют.

Недостатки этого способа следующие: используются химические реактивы и образуются растворы, которые в свою очередь необходимо утилизировать, использование для регенерации катионита, растворов H2SO4 и Na2SO4 связано с образованием и выделением малорастворимого гипса (CaSO4), затрудняющего эксплуатацию установки и приводящего к быстрому износу аппарата.

Известен способ экстракционного разделения и концентрирования циркония и гафния. [RU 2190677, С2, 2002]. В промышленных масштабах применяется экстракция из азотнокислых растворов. Экстрагируют из растворов, содержащих 5-8 моль/л HNO3. В качестве экстрагента используют растворы ТБФ (трибутилфосфат) (20-60%) в предельных углеводородах, керосине, ксилоле.

Недостатками этого способа являются множество механических и пневматических устройств, повышенная чувствительность к загрязнениям, применение больших количеств органических растворителей увеличивает пожароопасность производства, относительно высокая стоимость экстрагентов ограничивает масштабы производства, большая концентрация ионов F и SO4 препятствует экстракции Zr и Hf, образующих с ними прочные гидратированные комплексы.

Известен способ разделения близких по свойствам элементов циркония и гафния с помощью дробной кристаллизации [RU 2002838 С1, 1993]. Данный способ включает растворение кристаллов фтороцирконата калия и фторогафната калия в воде, нагревание полученной суспензии до 80°С и охлаждение насыщенного раствора с получением солевой фракции кристаллов и маточных растворов, охлаждение насыщенного раствора ведут при перемешивании в присутствии насыщенного AM - пористого анионита стадийно: на первой стадии до 35-70°С, а на последней стадии - до 15-25°С с выведением выделившихся кристаллов на каждой стадии.

Недостатками этого способа являются: высокие энергетические затраты, а также необходимы большие площади под размещение оборудования.

Задачей предлагаемого изобретения является разработка способа разделения циркония и гафния, который снижает энергетические затраты процесса разделения, а также не предполагает использование химических реагентов.

Поставленная задача достигается тем, что, как и в известном способе, разделение циркония и гафния включает получение водного раствора исходной смеси, содержащей соли циркония и гафния, и последующее многократное разделение кристаллизацией солей циркония от насыщенного раствора гафния.

Особенностью предлагаемого способа является то, что перед кристаллизацией обеспечивают образование газовых гидратов, приводящее к удалению лишнего растворителя из раствора

Это достигается тем, что перед кристаллизацией проводят насыщение водного раствора гидратообразующим газом при понижении температуры для образования газовых гидратов, а кристаллизацию ведут в присутствии гидратообразующего газа, которым насыщают водный раствор солей исходной смеси.

Кроме того, в качестве гидратообразующего газа используют газ, у которого верхний предел размеров молекул соответствует мольному объему, не превышающему 85×10-6 м3/моль.

Кроме того, в качестве гидратообразующего газа используют смесь газов.

Кроме того, температуру и давление при образовании газовых гидратов выбирают в зависимости от выбранного гидратообразующего газа.

Способ осуществляется следующим образом. В герметичную емкость подают раствор, содержащий соли циркония и гафния, где его насыщают гидратообразующим газом. Затем раствор подают на разделение в реактор. В этот же реактор подают гидратообразующий газ, в результате чего в реакторе происходит образование газовых гидратов при установленной температуре, давлении и интенсивности смешивания газа с раствором. Выбор условий образования газовых гидратов зависит от выбранного гидратообразующего газа. В качестве гидратообразующего газа используют газ, у которого верхний предел размеров молекул соответствует мольному объему, не превышающему 85×10-6 м3/моль, например фреоны, сероводород, пропан и т.д. Хорошие результаты достигаются при использовании смеси газов, образующих газовые гидраты, например окиси углерода (СО2) и пропана (С3Н8).

Удаление лишнего растворителя приводит к кристаллизации, при этом твердые кристаллы обогащаются цирконием, а оставшийся раствор обогащается гафнием. Из-за разности растворимостей солей циркония и гафния последний покидает реактор вместе с лишним растворителем. Процесс ведут до необходимого обогащения циркония.

Пример 1.

Для разделения использовалась соль гексафтороцирконата калия, содержащая ˜1,5% гафния относительно циркония.

В емкость подают раствор, содержащий соли фтороцирконата калия и фторогафната калия, где его насыщают гидратообразующим газом. В качестве гидратообразующего газа применяют фреон-22. Раствор охлаждают до 13°С и подают в смеситель, куда также подается фреон-22 под давлением 800 кПа. Температура, давление и интенсивность смешивания газа с водой приводят к образованию гидратов, что обеспечивает выведение лишнего растворителя из раствора. После чего раствор с кристаллогидратами и с выкристаллизованной солью циркония подают в реактор. При этом из-за разности растворимостей К2ZrF6 и К2HfF6 последний покидает аппарат вместе с кристаллогидратами. Следует также отметить, что при образовании газовых гидратов происходит выделение тепла ˜20 кДж/моль.

Таблица 1.Условия образования газогидратов (фреона-22).Т, °СР, кПа5010015020078010000-6-+++++0-+++++7----++16----++18------«+» - гидраты образуются; «-» - гидраты не образуются.

Пример 2.

Отличается от примера 1 тем, что в качестве гидратообразующего газа использовался фреон-12. Процесс проводили при температуре 12°С и давлении 560 кПа. Теплота образования гидрата фреона-21 из воды и газа равна 126,1 кДж/моль.

Таблица 2.Условия образования газогидратов (фреона-12).Т, °СР, кПа3010015020050010000-8++++++0-+++++7--++++12----++17------

Пример 3.

Отличается от примера 1 тем, что в качестве гидратообразующего газа использовался сероводород. Процесс проводили при температуре 17°С и давлении 800 кПа.

Таблица 3.Условия образования газогидратов (сероводород).Т, °СР, кПа5010030010002250100000-+++++10--++++21---+++29----++31------

Пример 4.

Отличается от примера 1 тем, что в качестве гидратообразующего газа использовалась смесь газов С3Н8+СО2. Процесс проводили при температуре 11°С и давлении 4500 кПа.

Таблица 4.Условия образования газогидратов (смесь газов С3Н8+СО2).Т, °СР, кПа25035045012504300100000-+++++4--++++5---+++11----++17------

Пример 5.

Отличается от примера 1 тем, что в качестве гидратообразующего газа использовался пропан. Процесс проводили при температуре 5°С и давлении 980 кПа. Теплота образования гидрата пропана из воды и газа равна 134,5 кДж/моль.

Таблица 5.Условия образования газогидратов (пропан).Т, °СР, кПа5010015020040010000-12-+++++-5--++++0---+++7----++12------

Преимущества газогидратного разделения циркония и гафния от других способов: газы, используемые для образования твердой фазы, могут использоваться в замкнутом цикле, при образовании газовых гидратов теплота выделяется, а при разложении поглощается, поэтому весь процесс требует минимальных затрат энергии, производительность способа может варьироваться в широких пределах и зависит только от производительности компремирующего оборудования, основные аппараты для проведения процесса разделения циркония и гафния газогидратным способом имеют незначительные размеры ≈1,2 м3 при производительности 273 м3/ч, процесс проводят при температурах ниже 25°С.

Похожие патенты RU2307182C2

название год авторы номер документа
СПОСОБ ОЧИСТКИ ВОДЫ 2006
  • Гузеев Виталий Васильевич
  • Дульбеев Владимир Валериевич
  • Соколов Дмитрий Сергеевич
  • Гузеева Татьяна Ивановна
RU2311347C2
СПОСОБ ОЧИСТКИ ЦИРКОНИЯ ОТ ГАФНИЯ 1996
  • Сергеев А.В.
  • Ягодин В.Г.
  • Щелоков Р.Н.
  • Кузнецов Н.Т.
  • Ковалев В.В.
  • Фомин В.С.
  • Котрехов В.А.
RU2104947C1
СПОСОБ ПОЛУЧЕНИЯ ГАЗОВЫХ ГИДРАТОВ КОНДЕНСАЦИЕЙ НАНОКЛАСТЕРОВ 2018
  • Коверда Владимир Петрович
  • Файзуллин Марс Закиевич
  • Виноградов Андрей Владимирович
  • Томин Андрей Сергеевич
RU2718795C2
СПОСОБ И УСТРОЙСТВО ДЛЯ СОЗДАНИЯ ЛЕДЯНЫХ УЗОРОВ 2010
  • Мельников Владимир Павлович
  • Мельникова Алёна Александровна
  • Нестеров Анатолий Николаевич
  • Феклистов Владимир Николаевич
RU2437773C1
Способ кристаллизации газогидратов Смирнова 1986
  • Смирнов Леонард Федорович
SU1421360A1
Способ кристаллизации газовых гидратов 1990
  • Макагон Юрий Федорович
  • Нестеров Анатолий Николаевич
  • Смирнов Леонард Федорович
SU1799286A3
СПОСОБ ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ РАВНОВЕСНОЙ С ГАЗОВЫМ ГИДРАТОМ ПОРОВОЙ ВОДЫ В ДИСПЕРСНЫХ СРЕДАХ (ВАРИАНТЫ) 2008
  • Чувилин Евгений Михайлович
  • Истомин Владимир Александрович
  • Сафонов Сергей Сергеевич
RU2391650C1
СПОСОБ ОЧИСТКИ ПРИРОДНОГО ГАЗА 2004
  • Мельников Владимир Павлович
  • Нестеров Анатолий Николаевич
  • Решетников Алексей Михайлович
  • Феклистов Владимир Николаевич
RU2288774C2
ТЕХНОЛОГИЧЕСКИЙ КАСКАД ДЛЯ РАЗДЕЛЕНИЯ И ОБОГАЩЕНИЯ ТЕТРАФТОРИДОВ ЦИРКОНИЯ И ГАФНИЯ 2010
  • Буйновский Александр Сергеевич
  • Русаков Игорь Юрьевич
  • Софронов Владимир Леонидович
  • Сидоров Евгений Владимирович
RU2434957C2
Способ получения тонкодисперсных водных эмульсий 1986
  • Лисичкин Ардалион Михайлович
  • Чернов Павел Петрович
  • Алексишвили Мака Матвеевна
SU1411013A1

Реферат патента 2007 года СПОСОБ РАЗДЕЛЕНИЯ ЦИРКОНИЯ И ГАФНИЯ

Изобретение относится к технологии получения ядерно-чистого циркония, конкретно - к технологии очистки циркония от гафния и может быть использовано на рудоперерабатывающих предприятиях и в атомной промышленности. Техническим результатом изобретения является снижение энергетических затрат процесса разделения циркония и гафния, а также исключение использования химических реагентов. Способ разделения циркония и гафния включает получение водного раствора исходной смеси, содержащей соли циркония и гафния, и последующее многократное разделение кристаллизацией солей циркония от насыщенного раствора гафния. Особенностью способа является то, что перед кристаллизацией обеспечивают образование газовых гидратов, приводящее к удалению лишнего растворителя из раствора путем насыщения раствора гидратообразующим газом при понижении температуры. 3 з.п. ф-лы, 5 табл.

Формула изобретения RU 2 307 182 C2

1. Способ разделения циркония и гафния из смеси их солей, включающий получение водного раствора из смеси их солей и последующую многократную кристаллизацию солей циркония от насыщенного раствора гафния, отличающийся тем, что перед кристаллизацией проводят насыщение водного раствора гидратообразующим газом при понижении температуры для образования газовых гидратов и кристаллизацию ведут в присутствии гидратообразующего газа, которым насыщают водный раствор солей исходной смеси.2. Способ по п.1, отличающийся тем, что в качестве гидратообразующего газа используют газ, у которого верхний предел размеров молекул соответствует мольному объему, не превышающему 85·10-6 м3/моль.3. Способ по п.2, отличающийся тем, что в качестве гидратообразующего газа используют смесь газов.4. Способ по п.1, отличающийся тем, что температуру и давление при образовании газовых гидратов выбирают в зависимости от выбранного гидратообразующего газа.

Документы, цитированные в отчете о поиске Патент 2007 года RU2307182C2

RU 2002838 C1, 15.11.1993
Способ выделения кристаллов солей и устройство для его осуществления 1989
  • Бакум Эдуард Арестарфович
SU1725945A1
RU 2052385 C1, 20.01.1996
US 4529444 A, 16.07.1985
Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1
JP 63236711 A, 03.10.1988.

RU 2 307 182 C2

Авторы

Гузеев Виталий Васильевич

Соколов Дмитрий Сергеевич

Дульбеев Владимир Валериевич

Даты

2007-09-27Публикация

2005-10-31Подача