Изобретение относится к люминесцентным материалам, а именно к электролюминесцентным материалам, содержащим органическое люминесцентное вещество.
Известен электролюминесцентный материал (ЭЛМ), состоящий из электронного инжектирующего слоя, активного люминесцентного слоя на основе люминесцентного вещества, дырочно-транспортного слоя и дырочно-инжектирующего слоя, содержащий в качестве люминесцентного слоя испаренный слой органического соединения - комплексы алюминия, цинка и некоторых других металлов с производными 8-гидроксихинолина [U.Mitschke, P.Bauerle. J.Mater. Chem., 2000, 10, 1471-1507].
Наиболее близким по технической сущности к предлагаемому устройству является ЭЛМ, содержащий в качестве люминесцентного слоя трис-(8-гидроксихинолинат) алюминия [C.W.Tang, S.A.Van Slike Appl. Phys. Letter 51, 913-915 (1987)] (см. рис.).
При этом в качестве дырочно-инжектирующего слоя (анода) применяется прозрачный низкоомный слой на основе смешанного оксида индия и олова, In2O3-SnO3 (ITO), в качестве электронно-инжектирующего слоя (катода) - алюминий или сплав магний серебро, а в качестве дырочно-транспортного слоя - N,N'-дифенил-N,N'-(3-метилфенил)-1,1'-бифенил-4,4'-диамин (TPD).
Однако временной ресурс электролюминесцентных устройств на основе подобного рода комплексов часто невелик. Помимо ряда других причин это связано со свойствами данных материалов: их кристаллизацией в процессе работы устройств, что меняет однородность проводящих свойств слоя, а также гидролизом металлокомплексов следами воды и окислением кислородом воздуха с последующим их распадом [Tokito S. et al., Appl. Phys. Lett. 1997, v.70, No15, p.1929-1931; Burrows P.E. et al., Appl. Phys. Lett. 1994, v.65. No 23, p.2922-2924]. Это также ведет к потере эксплуатационных характеристик данного слоя.
Кроме того, временной ресурс электролюминесцентных устройств ограничивается также низкой температурной устойчивостью материалов дырочно-транспортных слоев, что связано с изменением морфологии слоя при повышении температуры из-за их низкой температуры стеклования (так, для TPD температура стеклования составляет 60°С).
Задачей настоящего изобретения является создание ЭЛМ с повышенным временным ресурсом за счет повышенной устойчивости активного люминесцентного слоя по отношению к кристаллизации и гидролизу, а также повышенной температурной устойчивости дырочно-транспортного слоя.
Поставленная задача решается тем, что согласно изобретению электролюминесцентный материал, состоящий из электронного инжектирующего слоя, активного люминесцентного слоя на основе люминесцентного вещества, дырочно-транспортного слоя и дырочно-инжектирующего слоя, в качестве люминесцентного вещества содержит металлокомплексы с лигандами на основе производных 8-аминохинолина общей формулы (I):
где М=Zn, n=2;
группа R1 может быть выбрана из ряда:
- алкильная группа, состоящая из 1-4 атомов углерода и имеющая нормальное или разветвленное строение;
- арильная группа; моно- или полигалогензамещенная фенильная группа, в которой атомами галогена являются фтор, хлор, бром, иод; моно- или полиалкилзамещенная фенильная группа, в которой
- алкильные заместители состоят из 1-4 атомов углерода и имеют нормальное или разветвленное строение; R2-R7 - водород.
В качестве примеров веществ по формуле (I) могут быть использованы цинковые комплексы 8-(метилсульфаниламино)хинолина (II) и 8-(3,5-дифторфенилсульфаниламино)хинолина (III):
В сульфаниламино производных хинолина атом водорода, связанный с атомом азота, по своей кислотности сопоставим с соответствующим атомом водорода фенольного гидроксила. Это позволяет получать прочные соли (металлокомплексы) с ионами металлов.
Объемные заместители у атома азота в металлокомплексе должны затруднять быструю кристаллизацию последних в электронно-транспортном слое при работе устройства, что может улучшить его временной ресурс по сравнению с устройством, где используются металлокомплексы 8-гидроксихинолина.
Объемные заместители алкил- или арилсульфанильных фрагментов в 8-аминохинолине экранируют подход молекулы воды к связи азот - металл, что затрудняет гидролиз металлокомплекса по сравнению с таковыми на основе 8-гидроксихинолина. Это также должно положительно сказаться на времени работы устройства.
Поставленная задача решается также тем, что в качестве дырочно-транспортного слоя материал предпочтительно содержит смесь олигомеров трифениламина с общей формулой
где n=8-9, при молекулярно-массовом распределении: Mn=2332, Mw=3586, характеризующуюся высокой температурой стеклования 185°С, что обеспечивает сохранение морфологии дырочно-транспортного слоя даже при повышенных температурах [Якущенко И.К., Каплунов М.Г., Шамаев С.Н., Ефимов О.Н., Николаева Г.В., Белов М.Ю., Марченко Е.П., Скворцов А.Г., Воронина В.А. "Способ получения смеси олиготрифениламинов, способ получения 3-(4-бифенилил)-4-(4-третбутилфенил)-5-(4-диметиламино-фенил)-1,2,4-триазола и электролюминесцентное устройство" Патент РФ N 2131411 от 10.06.99].
Изобретение иллюстрируется следующими примерами.
Пример 1. Синтез 8-(метансульфаниламино)хинолина (IV)
Синтезы проводятся по известной методике ["Методы получения химических реактивов и препаратов". Выпуск 4-5, Москва, ИРЕА, 1962, стр.67-69.]
Схема синтеза:
К раствору 2,88 г (0,02 М) 8-аминохинолина в 10 мл сухого пиридина при охлаждении до 3-5°С прибавляли раствор 2,8 г (0,02 М) метансульфохлорида в 3,5 мл сухого тетрагидрофурана. Время прибавления 15-20 мин. Затем смесь перемешивали при той же температуре 30 мин, далее 1 час при кипении реакционной смеси. После этого отогнали растворитель, остаток охладили до комнатной температуры и обработали 75 мл воды. Образовавшийся осадок отфильтровали, промыли 20 мл воды, сушили на воздухе. Получили 4,54 г неочищенного продукта (IV). Соединение (IV) перекристаллизовали из бензола (с последующим добавлением гексана). Получили 3,93 г чистого вещества.
Т.пл. 146,5-147°C. Выход 88,5% от теоретического.
Элементный анализ. Найдено, %: С 55,74; Н 4,78; N 12,15; S 14,34. Брутто формула C10H10N2О2S. Вычислено, %: С 54,04; Н 4,54; N 12,60; S 14,34. ПМР-спектр δ (м.д.) 3,15 (3Н, СН3-, с.), 7,59-7,63 (Н3 д.д.), 7,64-7,68(Н6 д.д.), 7,73-7,75 (Н7 д.), 7,75-7,77(Н5 д.), 8,44-8,46 (Н4, д.), 8,94-8,96 (Н2, д.), 9,39 (NH, с.).
Масс-спектр: m/e (I/Imax, %): 222 (М, 43), 143 (100), 116 (75), 89 (31), 63 (22), 39 (15).
Пример 2. Синтез 8-(3,5-дифторфенилсульфаниламино)хинолина (V)
Схема синтеза:
К раствору 2,02 г (0,014 М) 8-аминохинолина в 5 мл сухого пиридина при охлаждении до 3-5°С прибавляли раствор 3,4 г (0,016 М) 3,5-дифторфенилсульфохлорида в 10 мл тетрагидрофурана. Время прибавления 10-15 мин. Смесь перемешивали при той же температуре 30 мин, затем при комнатной 1 час и еще 1 час при кипячении реакционной смеси. После этого смесь охладили и обработали 250 мл холодной воды. Полученный осадок отфильтровывали, промывали водой, сушили. Полученный неочищенный продукт (4,75 г) растворяли при нагревании в бензоле, раствор отфильтровывали от нерастворимых примесей, к фильтрату добавляли гексан. Полученный при этом осадок соединения (V) отфильтровывали, промывали гексаном, сушили. Получили 3,89 г вещества VI. Т.пл. 119-119,5°C. Выход 87% от теоретического.
Элементный анализ. Найдено, %: С 54,00; Н 4,21; N 8,70; S 10,37. Брутто формула C15H10F2N2О2S. Вычислено, %: С 56,25; Н 3,15; N 8,75; S 10,01. ПМР-спектр δ (м.д.) 7,53-7,58 (1Н из Ph, Н3, м.), 7,58-7,71 (Н6 д.д.), 7,63-7,70 (2Н Ph, м.), 7,69-7,72 (Н7, д.), 7,73-7,76 (Н5, д.), 8,38-8,40 (Н4, д.), 8,85-8,87 (Н2, д.), 10,5 (NH, с.).
Масс спектр: m/e (I/Imax, %): 320 (М, 35), 256 (40), 143 (100), 116 (78), 89 (31), 63 (27), 39 (12).
Пример 3. Синтез бис-((8-метансульфаниламино)хинолината)цинка (II)
Схема синтеза:
2,22 (0,01 М) 8-(метансульфаниламино)хинолина (IV) суспендировали в 25 мл сухого метанола. К этой смеси при комнатной температуре прибавляли раствор метилата натрия, полученного растворением 0,23 г (0,01 М) натрия в 6 мл метанола. При этом образовывался осадок натриевой соли соединения (IV). Смесь перемешивали в течение 30 мин при той же температуре, после чего прибавляли по каплям раствор 0,68 г (0,005 М) безводного хлорида цинка в виде его раствора в 5 мл сухого метанола. Затем смесь перемешивали 2 часа при нагревании до 50-55°C. По охлаждении отфильтровывали осадок белого цвета, промывали его последовательно водой, метанолом. Сушили в вакууме над Р2O5. Получили 2,41 г соединения (II). Выход 95,1% от теоретического. Для дополнительной очистки вещество перекристаллизовывали из тетрагидрофурана. Вещество не плавится до 380°C.
Элементный анализ. Найдено, %: С 47,57; Н 3,99; N 10,36; S 11,46; Zn 12,86. Брутто формула C20H18N4О4S2Zn. Вычислено, %: С 47,30; Н 3,57; N 11,03; S 12,63; Zn 12,87.
УФ-спектр: 242, 265, 382 нм (поглощение, натерт на кварц), 500 нм (фотолюминесценция, порошок, λвозб=380 нм)
ИК-спектр (табл.KBr): 3094, 3067, 3016, 3005, 2928, 2850, 1604, 1584, 1467, 1428, 1418, 1392, 1385, 1331, 1321, 1285, 1273, 1248, 1207, 1196, 1130, 1078, 1044, 996, 977, 956, 881, 829, 829, 804, 790, 768, 734, 663, 640, 590, 540, 552, 526, 517, 444.
Присутствие полос валентных колебаний С-Н в области 3000-3100 см-1 и полос колебаний двойных связей С=С в области 1500-1600 см-1 подтверждает наличие ароматических колец и системы сопряженных связей углерод-углерод.
Пример 4. Синтез бис-[8-(3,5-дифторфенилсульфаниламино)хинолината]цинка (III)
Схема синтеза:
1,92 г (0,06 М) 8-(3,5-дифторфенилсульфаниламино)хинолина (V) суспендировали в 25 мл сухого метанола. К этой суспензии при комнатной температуре прибавляли раствор метилата натрия, полученный растворением 0,14 г (0,06 М) натрия в 6 мл метанола. Суспензия растворялась и смесь перемешивалась при нагревании до 35-40°С 30 мин. Затем к смеси прибавляли по каплям раствор 0,41 г (0,003 М) безводного хлорида цинка в 10 мл метанола. Образовывался белый осадок. Его перемешивали при 35-40°C еще 1 час, затем охлаждали до комнатной температуры, отфильтровывали, промывали водой, метанолом, сушили. Получили 2,01 г соединения (III). Т.пл. 308-309°C. Выход 95% от теоретического. Для дополнительной очистки вещество перекристаллизовывали из тетрагидрофурана
Элементный анализ. Найдено, %: С 52,00; Н 3,32; N 7,65; S 9,10. Брутто формула C30H18F4N4О4S2Zn. Вычислено, %: С 51,19; Н 2,58; N 7,96; S 9,10.
УФ-спектр: 265, 370 нм (поглощение, натерт на кварц), 465 нм (фотолюминесценция, порошок, λвозб=380 нм).
ИК-спектр (табл.KBr): 3075, 3043, 3924, 2853, 1606, 1587, 1504, 1468, 1439, 1384, 1327, 1294, 1276, 1245, 1209, 1195, 1144, 1123, 1084, 1047, 987, 971, 894, 971, 894, 859, 825, 796, 788, 759, 750, 678, 665, 636, 611, 596, 578, 538, 511.
Присутствие полос валентных колебаний С-Н в области 3000-3100 см-1 и полос колебаний двойных связей С=С в области 1500-1600 см-1 подтверждает наличие ароматических колец и системы сопряженных связей углерод-углерод.
Пример 5. Электролюминесцентные свойства комплексов II и III
Для изготовления электролюминесцентного устройства со структурой ITO/HTL/EML/Al, где ITO - дырочно-инжектирующий слой, HTL - дырочно-транспортный слой, EML - электролюминесцентный слой и Al - электронно-инжектирующий слой, используют стеклянную подложку, покрытую прозрачным слоем смешанного оксида индия и олова с сопротивлением 20-25 Ом/квадрат. На подложку наносят дырочно-транспортный слой, состоящий из РТА. При этом РТА наносят методом центрифугирования из раствора в толуоле. Толщина дырочно-транспортного слоя 0.05-0.1 мкм. Затем путем испарения комплекса II или комплекса III, в вакууме при температуре около 350°С и базовом давлении 5·10-6 мм рт.ст. наносят активный электролюминесцентный слой толщиной 0.02-0.05 мкм. Образец помещают в вакуумную установку ВУП-4, откачивают в динамическом режиме до вакуума 5·10-6 мм рт.ст. и напыляют металлический электрод путем испарения алюминия. Толщина металлического электрода порядка 0,1 мкм. Площадь светящейся поверхности 4-5 мм2. Полученное электролюминесцентное устройство излучает сине-зеленый свет при приложении прямого напряжения. Устройство, содержащее II, обладает следующими параметрами: яркость 140 кд/м2 достигается при напряжении 19 В и плотности тока 1,5 мА/см2 (эффективность 9 кд/А). Устройство, содержащее III, обладает следующими параметрами: яркость 24 кд/м2 достигается при напряжении 20 В и плотности тока 19 мА/см2 (эффективность 1,2 кд/А).
Таким образом, в настоящем изобретении создан электролюминесцентный материал с повышенным временным ресурсом за счет повышенной устойчивости активного люминесцентного слоя по отношению к кристаллизации и гидролизу, а также повышенной температурной устойчивости дырочно-транспортного слоя.
название | год | авторы | номер документа |
---|---|---|---|
ЭЛЕКТРОЛЮМИНЕСЦЕНТНЫЙ МАТЕРИАЛ, СОДЕРЖАЩИЙ ОРГАНИЧЕСКОЕ ЛЮМИНЕСЦЕНТНОЕ ВЕЩЕСТВО | 2007 |
|
RU2368641C2 |
ЭЛЕКТРОЛЮМИНЕСЦЕНТНЫЙ МАТЕРИАЛ, СОДЕРЖАЩИЙ ОРГАНИЧЕСКОЕ ЛЮМИНЕСЦЕНТНОЕ ВЕЩЕСТВО | 2004 |
|
RU2265040C1 |
ЭЛЕКТРОЛЮМИНЕСЦЕНТНЫЙ МАТЕРИАЛ, СОДЕРЖАЩИЙ ОРГАНИЧЕСКОЕ ЛЮМИНЕСЦЕНТНОЕ ВЕЩЕСТВО | 1998 |
|
RU2137800C1 |
ЭЛЕКТРОЛЮМИНЕСЦЕНТНЫЙ МАТЕРИАЛ, СОДЕРЖАЩИЙ ОРГАНИЧЕСКОЕ ЛЮМИНЕСЦЕНТНОЕ ВЕЩЕСТВО | 1998 |
|
RU2140956C1 |
БИС[2-(N-ТОЗИЛАМИНО)БЕНЗИЛИДЕН-4'-ДИМЕТИЛАМИНОФЕНИЛИМИНАТО]ЦИНКА(II) И ЭЛЕКТРОЛЮМИНЕСЦЕНТНОЕ УСТРОЙСТВО НА ЕГО ОСНОВЕ | 2012 |
|
RU2518893C1 |
БИС{3-МЕТИЛ-1-ФЕНИЛ-4-[(ХИНОЛИН-3-ИМИНО)-МЕТИЛ]1-Н-ПИРАЗОЛ-5-ОНАТО}ЦИНКА(II) И ЭЛЕКТРОЛЮМИНЕСЦЕНТНОЕ УСТРОЙСТВО НА ЕГО ОСНОВЕ | 2011 |
|
RU2470025C1 |
ЭЛЕКТРОЛЮМИНЕСЦЕНТНОЕ УСТРОЙСТВО | 2013 |
|
RU2551675C2 |
ЭЛЕКТРОЛЮМИНЕСЦЕНТНОЕ УСТРОЙСТВО | 2009 |
|
RU2408648C1 |
СПОСОБ ПОЛУЧЕНИЯ СМЕСИ ОЛИГОТРИФЕНИЛАМИНОВ, СПОСОБ ПОЛУЧЕНИЯ 3-(4-БИФЕНИЛИЛ)-4- (4-ТРЕТ-БУТИЛФЕНИЛ)-5-(4-ДИМЕТИЛАМИНОФЕНИЛ)-1,2,4-ТРИАЗОЛА И ЭЛЕКТРОЛЮМИНЕСЦЕНТНОЕ УСТРОЙСТВО | 1997 |
|
RU2131411C1 |
ОРГАНИЧЕСКИЙ ЭЛЕКТРОЛЮМИНЕСЦЕНТНЫЙ МАТЕРИАЛ, ИЗЛУЧАЮЩИЙ В КРАСНОЙ ОБЛАСТИ СПЕКТРА | 1998 |
|
RU2155204C2 |
Изобретение относится к электролюминесцентным материалам, содержащим органическое люминесцентное вещество. Описывается новый электролюминесцентный материал, состоящий из электронного инжектирующего слоя, активного люминесцентного слоя на основе хелатного комплекса металла, дырочно-транспортного слоя и дырочного инжектирующего слоя. В качестве люминесцентного вещества содержит металлокомплексы на основе сульфанильных производных 8-амино-хинолина, в частности цинковые комплексы 8-(метилсульфаниламино)-хинолина и 8-(3,5-дифторфенилсульфаниламино)-хинолина. В качестве дырочно-транспортного слоя материал предпочтительно содержит смесь олигомеров трифениламина. Технический результат - создание электролюминесцентного материала с повышенной влагоустойчивостью, повышенной устойчивостью к кристаллизации и повышенной термостабильностью. 3 з.п. ф-лы.
где М=Zn, n=2;
группа R1 может быть выбрана из ряда:
алкильная группа, состоящая из 1-4 атомов углерода, и имеющая нормальное или разветвленное строение;
арильная группа;
моно- или полиалкилзамещенная фенильная группа, в которой алкильные заместители состоят из 1-4 атомов углерода и имеют нормальное или разветвленное строение;
моно- или полигалогензамещенная фенильная группа, в которой атомами галогена являются фтор, хлор, бром, иод;
R2-R7 - водород.
где n=8-9, при молекулярно-массовом распределении Mn=2332, Mw=3586.
C.W.TANG, S.A.VAN | |||
Slike Appl | |||
Phys | |||
Letter | |||
Кузнечная нефтяная печь с форсункой | 1917 |
|
SU1987A1 |
U.MITSCHKE, P.BAUERLE | |||
J.Mater Chem | |||
ЩИТОВОЙ ДЛЯ ВОДОЕМОВ ЗАТВОР | 1922 |
|
SU2000A1 |
ОРГАНИЧЕСКИЙ ЭЛЕКТРОЛЮМИНЕСЦЕНТНЫЙ МАТЕРИАЛ, ИЗЛУЧАЮЩИЙ В КРАСНОЙ ОБЛАСТИ СПЕКТРА | 1998 |
|
RU2155204C2 |
ЭЛЕКТРОЛЮМИНЕСЦЕНТНЫЙ МАТЕРИАЛ, СОДЕРЖАЩИЙ ОРГАНИЧЕСКОЕ ЛЮМИНЕСЦЕНТНОЕ ВЕЩЕСТВО | 1998 |
|
RU2140956C1 |
ЭЛЕКТРОЛЮМИНЕСЦЕНТНЫЙ МАТЕРИАЛ, СОДЕРЖАЩИЙ ОРГАНИЧЕСКОЕ ЛЮМИНЕСЦЕНТНОЕ ВЕЩЕСТВО | 1998 |
|
RU2137800C1 |
Авторы
Даты
2007-11-20—Публикация
2006-07-10—Подача