Изобретение относится к области химической технологии, а именно получению алкилзамещенных силанов, в частности к способу получения метилсиланов. Метилсиланы используются для получения полимеров, каучуков, резин, в производстве полупроводников и микроэлектронике, для плазменного травления кремниевых пластин.
Известен способ [A.Gilbert, G.Cooper, R.Shade. Jndustr. and Engng. Chem. S 1, 665 (1959)] получения триметилсилана путем восстановления триметилхлорсилана гидридом натрия при пропускании паров триметилхлорсилана через суспензию тонкоизмельченного гидрида натрия при 250°С. При более низкой температуре, например при 200°С, реакция проходит плохо.
Недостатком способа является низкий выход целевого продукта и технические сложности при перемешивании и поддержании в рыхлом состоянии сухого гидрида натрия, а также его чрезвычайная пожаро- и взрывоопасность при столь высокой температуре.
Известен способ активации реакции гидридов щелочных и щелочноземельных металлов с хлоридом кремния при использовании хлорида и других солей цинка [О.Е.Ringwald, пат. США 3050366, 1962].
Однако этот процесс удовлетворительно протекает только в среде углеводородного растворителя, и метилхлорсиланы в этих условиях не восстанавливаются.
Наиболее близким по технической сущности к предложенному способу и принятым за прототип является способ получения триметилсилана восстановлением триметилхлорсилана литийалюминийгидридом в среде инертного углеводородного растворителя [Патент РФ №2266293, заявл. 25.08.04]. Процесс ведут при 80-120°С, а в качестве растворителя используют алкилароматический углеводород, выбранный из ряда СnНn+2, где n=7-8.
Реакция протекает по следующему уравнению:
LiAlH4+4Ме3SiCl→4 Me3SiH+LiCl+AlCl3
Недостатком данного способа является высокая стоимость литийалюминийгидрида, а также высокая его пожаро- и взрывоопасность.
Технической задачей данного изобретения является улучшение технологичности процесса за счет упрощения аппаратурного оформления процесса, повышение безопасности и удешевление производства триметилсилана при сохранении высоких выходов продукта.
В предлагаемом способе в качестве восстановителя триметихлорсилана используют гидрид натрия в виде суспензии в минеральном масле. В таком виде он безопасен при работе на открытом воздухе и имеет гораздо меньшую стоимость в пересчете на гидридный эквивалент по сравнению с литийалюминийгидридом. Однако в таком виде гидрид натрия проявляет низкую активность в реакции восстановления триметилхлорсилана.
NaH+Me3SiCl→Me3SiH+NaCl
Установлено, что если к гидриду натрия добавить галогениды некоторых металлов, являющиеся кислотами Льюиса, в частности алюминия или цинка, то его активность в реакции восстановления триметилхлорсилана значительно возрастает. В качестве галогенида могут быть использованы хлориды, бромиды, иодиды. Фториды в данном случае активность не проявляют. При этом процесс протекает через промежуточную стадию образования гидрида алюминия или цинка:
I. 3NaH+AlHal3→AlH3+3NaHal
2 NaH+ZnHal2→ZnH2+2NaHal, и далее
II. AlH3+3Ме3SiCl→3Ме3SiH+AlCl3
ZnH2+2Ме3SiCl→2Ме3SiH+ZnCl2
Галогенид металла добавляют не в стехиометрическом, а в каталитическом количестве, т.к., по-видимому, образующийся на II стадии хлорид металла вновь реагирует с гидридом натрия, образуя гидрид металла.
Процесс активации гидрида натрия проводят в среде инертного углеводородного растворителя, но выходы триметилсилана при этом получаются низкие, и не все восстановительные системы работают из-за того, что ни гидрид натрия, ни галогениды алюминия и цинка не растворяются в углеводородах и реакция сводится к гетерофазным процессам на поверхности диспергированных компонентов.
Проведение процесса восстановления в эфирах или смесях эфиров с углеводородами качественно изменяет ход реакции, т.к., по-видимому, на I стадии восстановления образуется растворимый в эфире гидрид металла, который связывается в эфират и приобретает устойчивость от термического разложения и восстановительную активность по отношению к триметилхлорсилану. В то же время применение чистых эфиров снижает эффективность восстановления, очевидно, за счет образования комплексов с исходным триметилхлорсиланом, которые более устойчивы к действию восстановителей, также приводит к интенсивному расщеплению эфира галогенидами алюминия и цинка с выделением побочных продуктов, загрязняющих триметилсилан, и удорожанию процесса за счет более высокой стоимости эфира по сравнению с углеводородом.
В качестве эфирного растворителя для предлагаемого процесса подходят
- простые эфиры, выбранные из ряда ROR′, где R, R′=CnH2n+1, n=2-3 (диэтиловый эфир, дипропиловый эфир);
- простые эфиры этиленгликоля, выбранные из ряда ROCH2CH2OR′, где R,R′=СnН2n+1, n=1-2 (диметоксиэтан, диэтоксиэтан);
- глимы СН3О(СН2СН2O)nСН3, где n=1-2 (моноглим, диглим).
Использование более тяжелых простых эфиров (диизопропиловый, дибутиловый), высших глимов не приводит к восстановлению триметилхлорсилана, а такие внутренние эфиры, как тетрагидрофуран, диоксан, расщепляются восстановительной системой.
В качестве углеводорода подходят предельные углеводороды СnН2n+2, n=7-12 (гептан, октан, нонан, декан, додекан) или ароматические углеводороды СnН2n-6, n=6-8 (бензол, толуол, ксилол, этилбензол).
Использование углеводородов с меньшим числом n не целесообразно вследствие высокой летучести, а с большим n приводит к получению вязких, трудно перемешиваемых растворов.
Подобранное соотношение растворителей в смеси от 50:1 до 1:10 позволяет получать триметилсилан с достаточно высоким выходом при меньших затратах на аппаратурное оформление для обеспечения безопасности процесса.
Предлагаемый способ осуществляют следующим образом. Все операции при получении триметилсилана проводятся в атмосфере сухого инертного газа.
В четырехгорлую колбу, снабженную мешалкой, термометром, капельной воронкой с «обводом», обратным холодильником с газоотводной трубкой, соединенной с охлаждаемой ловушкой, загружают смесь растворителей, AlBr3 и NaH в виде суспензии в минеральном масле. При перемешивании реакционную смесь подогревают до 60-120°С и выдерживают при этой температуре 10-30 минут. Затем равномерно и понемногу через капельную воронку дозируют триметилхлорсилан. По окончании дозирования смесь выдерживают еще около 0,5 часа при этой температуре, а затем отсоединяют ловушку. Состав триметилсилана определяют хроматографически. Выход составляет 75-85%.
Предложенный способ иллюстрируется следующими примерами, а результаты примеров приведены в таблице.
Пример 1. Четырехгорлая колба, объемом 0,5 л, снабженная мешалкой, термометром, капельной воронкой и обратным холодильником с газоотводной трубкой, соединена с ловушкой, охлаждаемой до температуры ниже -70°С. Выход из ловушки в атмосферу осуществляется через осушительный патрон. В колбу загружают 60 мл сухого толуола, 13,5 г (0,05 М) бромистого алюминия, 24 г (0,6 М) 60%-ной суспензии гидрида натрия в минеральном масле, 60 мл диглима. При перемешивании смесь нагревают до 90°С и выдерживают 20 мин. Затем в течение 1 часа равномерно прибавляют 64 мл (0,5 М) триметилхлорсилана. Образующийся триметилсилан собирают в охлаждаемой ловушке. Выход составляет 80%.
Остальные примеры выполняются аналогично при изменении некоторых условий проведения процесса (указаны в таблице). Примеры 1-16 иллюстрируют предложенный способ, примеры 17-21 выполнены по предложенному способу, но при значениях параметров, выходящих за пределы предложенных значений, пример 22 выполнен по способу-прототипу.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОЛУЧЕНИЯ МЕТИЛСИЛАНОВ | 2004 |
|
RU2266293C1 |
СПОСОБ ПОЛУЧЕНИЯ МЕТИЛСИЛАНА | 2000 |
|
RU2177946C1 |
СПОСОБ ПОЛУЧЕНИЯ АЛКИЛСИЛАНОВ | 2010 |
|
RU2436788C1 |
Способ получения кремнийорганических гидридов | 1990 |
|
SU1754718A1 |
Способ получения органогидросиланов | 1970 |
|
SU482046A3 |
СПОСОБ ПОЛУЧЕНИЯ 5-АЛКОКСИПЕНТАНОНОВ-2 | 1999 |
|
RU2171797C2 |
Способ получения 3-бензил-3-азабицикло-(3,1,0)-гексана | 1979 |
|
SU969158A3 |
СПОСОБ ПОЛУЧЕНИЯ И ОЧИСТКИ МИЗОПРОСТОЛА | 2018 |
|
RU2774634C2 |
Способ получения α,ω-дигидроперфторбутана | 2020 |
|
RU2739319C1 |
Способ получения производных дифениламинопропана | 1973 |
|
SU488399A3 |
Изобретение относится к области химической технологии, в частности к способу получения метилсиланов. Техническая задача - разработка способа получения триметилсилана с высокой чистотой и выходом продукта более безопасным по сравнению с известными способом при упрощении аппаратурного оформления процесса. Предложен процесс восстановления триметилхлорсилана с помощью активированного кислотами Льюиса гидрида натрия, используемого в виде суспензии в минеральном масле, проводимый при повышеной температуре в смеси инертного углеводорода и простого эфира. Полученные метилсиланы используются для получения полимеров, каучуков, резин, в производстве полупроводников и микроэлектронике. 8 з.п. ф-лы, 1 табл.
СПОСОБ ПОЛУЧЕНИЯ МЕТИЛСИЛАНОВ | 2004 |
|
RU2266293C1 |
СПОСОБ ПОЛУЧЕНИЯ МЕТИЛСИЛАНА | 2000 |
|
RU2177946C1 |
US 3050366 A, 21.08.1962 | |||
JP 6321959 A, 22.11.1994 | |||
JP 4230392 A, 19.08.1992. |
Авторы
Даты
2007-12-27—Публикация
2006-06-09—Подача