СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ Российский патент 2007 года по МПК C22C21/10 

Описание патента на изобретение RU2313594C1

Изобретение относится к области металлургии, а именно к получению сплавов на основе алюминия, предназначенных для изготовления штамповок, в частности штамповок дисков автомобильных колес.

Известны сплавы системы Al-Zn-Mg-Cu, например В95, В96ц1, которые используют для производства конструкционных штамповок. Однако сплавы обладают невысокой технологичностью при объемной штамповке, что не позволяет получать сложные по форме штамповки.

За прототип принят известный деформационный сплав 7075, содержащий следующие компоненты, мас.%:

Медь1.2÷2.0Магний2.1÷2.9Марганец<0.3Железо<0.50Кремний<0.40Цинк5.1÷6.1Титан<0.20Хром0.18÷0.28Алюминий остальное (ASTM B221M).

К недостаткам данного сплава относится следующее:

- сплав обладает недостаточной пластичностью в литом состоянии и, естественно, склонностью к образованию трещин при литье;

- сплав содержит большое количество легирующих элементов и примесей (более 10%), что приводит к образованию грубых первичных нерастворимых интерметаллидов и, соответственно, снижает усталостные характеристики изделий.

Технической задачей настоящего изобретения является создание сплава с оптимальным сочетанием прочности и пластичности, которые гарантируют требуемый уровень эксплуатационных характеристик дисков автомобильных колес, снижение их массы в сочетании с высокой технологичностью при объемной штамповке, особенно изделий сложной формы.

Указанный технический результат достигается тем, что сплав на основе алюминия, содержащий медь, магний, марганец, железо, кремний, цинк, титан, хром, согласно изобретению дополнительно содержит цирконий, бор и водород при следующем соотношении компонентов, мас%:

Медь0.8÷2.2Магний1.2÷2.6Марганец0.2÷0.6Железо≤0.25Кремний≤0.20Цинк5.0÷6.8Титан≤0.1Хром0.08÷0.17Цирконий0.01÷0.12Бор0.0008÷0.005Водород(0,3-4,1)10-5Алюминий остальное,

при этом: Ti+Zr+Cr≤0.25%, Cu+Mg+Zn≤8.6%.

Добавка бора и циркония обеспечивает повышение технологичности сплава при деформации, особенно при осадке и объемной штамповке за счет формирования в слитках мелкозернистой однородной структуры. Наличие в сплаве менее 0.0008% бора приводит к формированию в слитках грубой, крупнозернистой структуры и, как следствие, снижению технологичности при деформации.

При содержании в слитках более 0.005% бора образуются скопления интерметаллидов TiB2, снижающие усталостные и пластические характеристики полуфабрикатов.

Присутствие в сплаве водорода способствует образованию гидридов титана, которые, являясь модификаторами, дополнительно измельчают структуру слитка.

При содержании в слитках циркония менее 0,01% в полуфабрикатах образуется неоднородная крупнокристаллическая рекристаллизованная структура, увеличивающая анизотропию свойств по сечению полуфабрикатов.

При содержании циркония более 0,12% появляются первичные интерметаллиды Al3(Zr,Ti), уменьшающие технологичность слитков при деформации и способствующие образованию внутренних дефектов.

Присутствие наряду с сильнейшим антирекристаллизатором цирконием в предлагаемом сплаве в небольших количествах титана и хрома, при их суммарном содержании (Zr+Ti+Cr), не превышающем 0,25%, способствует формированию в штамповках нерек-ристаллизованной структуры с минимальным количеством эвтектических составляющих и отсутствием первичных интерметаллидов переходных элементов с алюминием.

Снижение степени легированности сплава основными компонентами Cu, Mg и Ti (менее 8,6%) уменьшает вероятность образования грубых избыточных фаз и их отрицательное влияние на технологичность при деформации и пластические свойства штамповок.

Пример осуществления изобретения.

В промышленных условиях литейного цеха предприятия заявителя были отлиты опытные слитки алюминиевого сплава с химическим составом, приведенным в таблице 1.

Таблица 1№ сплаваCuMgMnFeSiZnTiCrZrВН
10-5
12.22.60.60.250.25.00.10.080.010.00084,121.61.20.40.150.15.60.060.120.080.0012,730.81.90.20.200.156.8-0.170.120.0050,341.62.40.250.40.35.60.150.25--

1-3 предложенный сплав, 4 - известный сплав.

Из слитков после гомогенизации при температурах 455-470°С в течение 20 часов и последующей обточки были изготовлены штамповки дисков автомобильных колес. Штамповки подвергали термической обработке по режиму:

- закалка от температур 465-475°С после выдержки 90 мин в воду с температурой 20-25°С,

- старение по режиму Т2 (I ступень 110-120°С, выдержка 5 часов, II ступень 165-175°С, выдержка 15 часов).

Технологическая пластичность, приведенная в таблице 2, определялась на образцах, отобранных от гомогенизированных слитков.

Таблица 2.№ сплавовРастяжениеОсадка,
%
δ,%Ψ,%182,390,478285,896,484381,491,376472,483,262

Комплекс механических свойств заявленного и известного сплава представлен в таблице 3.

Таблица 3№ сплавовσвσ0,2δМЦУ, число
циклов до разрушения
РСК,
балл
МПа%151844211,410903251043212,611004352545610,8105034476392810004

Как видно из полученных и представленных результатов состав предложенного сплава позволяет повысить технологическую пластичность в 1,2-1,35 раза, пластичность в 1,35-1,6 раза при увеличении прочностных показателей более чем в 1,1 раза, сохранении коррозионных свойств и улучшении сопротивления усталости.

Использование предлагаемого сплава для производства штамповок, в том числе дисков автомобильных колес, позволит повысить технологичность их получения, а также надежность и работоспособность изделий в эксплуатации.

Предлагаемый сплав по сравнению с известным обладает оптимальным сочетанием прочности и пластичности, которые гарантируют требуемый уровень эксплуатационных характеристик дисков автомобильных колес, снижение их массы в сочетании с высокой технологичностью при объемной штамповке, особенно изделий сложной формы.

Похожие патенты RU2313594C1

название год авторы номер документа
СПЛАВ ВЫСОКОЙ ПРОЧНОСТИ НА ОСНОВЕ АЛЮМИНИЯ 2018
  • Еремеев Владимир Викторович
  • Еремеев Николай Владимирович
  • Петров Анатолий Павлович
  • Злыднев Михаил Иванович
  • Злыднев Иван Михайлович
  • Цветков Александр Владимирович
RU2738817C2
Свариваемый сплав на основе алюминия для противометеоритной защиты 2016
  • Мироненко Виктор Николаевич
  • Васенев Валерий Валерьевич
  • Карпова Жанна Александровна
  • Клишин Александр Федорович
  • Сыромятников Сергей Алексеевич
  • Тулин Дмитрий Владимирович
  • Еремеев Владимир Викторович
  • Еремеев Николай Владимирович
  • Тарарышкин Виктор Иванович
RU2614321C1
СВЕРХПРОЧНЫЙ ДЕФОРМИРУЕМЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО 2011
  • Савинов Виталий Иванович
  • Милашенко Валентина Александровна
RU2473709C1
ВЫСОКОПРОЧНЫЙ АЛЮМИНИЕВЫЙ СПЛАВ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2010
  • Сухих Александр Ювенальевич
  • Ефремов Вячеслав Петрович
  • Потехин Александр Васильевич
  • Кузеванов Сергей Александрович
  • Тимохов Сергей Николаевич
RU2451097C1
АЛЮМИНИЕВЫЙ СПЛАВ СИСТЕМЫ Al-Mg-Si 2017
  • Каблов Евгений Николаевич
  • Антипов Владислав Валерьевич
  • Оглодков Михаил Сергеевич
  • Григорьев Максим Викторович
  • Рудченко Алексей Сергеевич
  • Кузнецов Андрей Олегович
  • Волошина Елена Евгеньевна
RU2672977C1
ВЫСОКОПРОЧНЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО 2000
  • Фридляндер И.Н.
  • Каблов Е.Н.
  • Сенаторова О.Г.
  • Легошина С.Ф.
  • Самонин В.Н.
  • Сухих А.Ю.
  • Кохорст Иоганнес
RU2184166C2
СПЛАВ СИСТЕМЫ АЛЮМИНИЙ-МАРГАНЕЦ И ИЗДЕЛИЕ ИЗ ЭТОГО СПЛАВА 2002
RU2218437C1
ВЫСОКОПРОЧНЫЙ АЛЮМИНИЕВЫЙ СПЛАВ 2023
  • Манн Виктор Христьянович
  • Вахромов Роман Олегович
  • Крохин Александр Юрьевич
  • Рябов Дмитрий Константинович
  • Матвеев Сергей Владимирович
  • Фадеев Владимир Николаевич
  • Фокин Дмитрий Олегович
RU2805737C1
СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ 1999
  • Фридляндер И.Н.
  • Каблов Е.Н.
  • Кутайцева Е.И.
  • Исаев В.И.
  • Молостова И.И.
RU2164541C2
СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО 2001
  • Фридляндер И.Н.
  • Колобнев Н.И.
  • Самохвалов С.В.
  • Хохлатова Л.Б.
  • Каримова С.А.
  • Давыдов В.Г.
  • Захаров В.В.
  • Синявский В.С.
  • Бер Л.Б.
  • Капуткин Е.Я.
  • Рендигс Карл-Хайнц
  • Темпус Герхард
RU2215055C2

Реферат патента 2007 года СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ

Изобретение относится к области металлургии, а именно к получению сплавов на основе алюминия, предназначенных для изготовления штамповок, в частности штамповок дисков автомобильных колес. Сплав содержит следующие компоненты, мас.%: медь 0.8-2.2, магний 1.2-2.6, марганец 0.2-0.6, железо ≤0.25, кремний ≤0.20, цинк 5.0-6.8, титан ≤0.1, хром 0.08-0.17, цирконий 0.01÷0.12, бор 0.0008-0.005, водород (0,3-4,1)10-5, алюминий - остальное. Сплав обладает оптимальным сочетанием прочности и пластичности, которые гарантируют требуемый уровень эксплуатационных характеристик дисков автомобильных колес, снижение их массы в сочетании с высокой технологичностью при объемной штамповке, особенно изделий сложной формы. 2 з.п. ф-лы, 3 табл.

Формула изобретения RU 2 313 594 C1

1. Сплав на основе алюминия, содержащий медь, магний, марганец, железо, кремний, цинк, титан, хром, отличающийся тем, что он дополнительно содержит цирконий, бор и водород при следующем соотношении компонентов, мас.%:

Медь 0.8÷2.2

Магний 1.2÷2.6

Марганец 0.2÷0.6

Железо ≤0.25

Кремний ≤0.20

Цинк 5.0÷6.8

Титан ≤0.1

Хром 0.08÷0.17

Цирконий 0.01÷0.12

Бор 0.0008÷0.005

Водород (0,3-4,1)·10-5

Алюминий остальное

2. Сплав на основе алюминия по п.1, отличающийся тем, что сумма

Ti+Zr+Cr≤0,25%.

3. Сплав на основе алюминия по п.1, отличающийся тем, что сумма Cu+Mg+Zn≤8,6%.

Документы, цитированные в отчете о поиске Патент 2007 года RU2313594C1

ДВУХТАКТНЫЙ ДВИГАТЕЛЬ ВНУТРЕННЕГО ГОРЕНИЯ 1918
  • Саевич Н.А.
SU4784A1
ВЫСОКОПРОЧНЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО 2000
  • Фридляндер И.Н.
  • Каблов Е.Н.
  • Сенаторова О.Г.
  • Легошина С.Ф.
  • Самонин В.Н.
  • Сухих А.Ю.
  • Кохорст Иоганнес
RU2184166C2
Походная разборная печь для варки пищи и печения хлеба 1920
  • Богач Б.И.
SU11A1
Топчак-трактор для канатной вспашки 1923
  • Берман С.Л.
SU2002A1
СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ 0
  • Г. Б. Строганов, Н. С. Постнр Ков, М. Б. Альтман, В. В. Черкасов,
  • В. Д. Гол Ков Л. А. Сидлина
SU346368A1

RU 2 313 594 C1

Авторы

Тетюхин Владислав Валентинович

Сухих Александр Ювенальевич

Декун Иван Иванович

Ефремов Игорь Владимирович

Иванов Виталий Вячеславович

Даты

2007-12-27Публикация

2006-04-03Подача