СПОСОБ ПОЛУЧЕНИЯ КАТАЛИЗАТОРА ДЛЯ ДЕГИДРИРОВАНИЯ УГЛЕВОДОРОДОВ И КАТАЛИЗАТОР, ПОЛУЧЕННЫЙ ЭТИМ СПОСОБОМ Российский патент 2008 года по МПК B01J23/26 B01J21/04 B01J37/03 C07C5/333 

Описание патента на изобретение RU2318593C1

Изобретение относится к области каталитической химии, в частности к способам приготовления алюмохромовых катализаторов и составам для дегидрирования парафиновых углеводородов С25 до соответствующих олефинов.

Олефины - одни из важнейших продуктов органического синтеза. Их используют в производстве полипропиленов, высокооктановых добавок (метил-третично-бутиловый эфир) бензинов и целого ряда других производств.

В последние годы во всем мире непрерывно возрастает интерес к процессам дегидрирования легких углеводородов. Это связано с непрерывно возрастающим спросом на олефиновые и диолефиновые углеводороды (пропилен, н-бутены, изобутилен, бутадиен, изопрен, стирол и его производные), которые находят широкое применение в различных химических производствах: для получения синтетических каучуков (СК), пластмасс, компонентов автомобильного топлива и других ценных химических продуктов. Все это стимулирует разработку новых эффективных способов получения алюмохромовых катализаторов для дегидрирования.

Известен способ получения алюмохромового катализатора для дегидрирования олефинов, который получают смешиванием водорастворимых солей хрома и алюминия (хлоридов), фосфорной кислоты с последующим добавлением к смеси 15%-ного водного раствора аммиака для осаждения суспензии гидроксидов алюминия и хрома и образования фосфата аммония при рН раствора 3,9-7,8 (US 3327005, 20.06.1967, B01J 27/188; 27/14). После многократной декантации суспензию промывают, фильтруют и сушат при 100°С, формуют в таблетки и прокаливают в течение 6 часов при 650°С в токе воздуха или водяного пара. Полученный катализатор содержит от 4 до 12 атомов хрома. Степень конверсии бутана при использовании такого катализатора составляет 49,5%. Недостатком катализатора, полученного по известному способу, является низкая селективность при дегидрировании бутана и пропана.

Известен способ получения алюмохромового катализатора для дегидрирования бутана, который готовят путем совместного соосаждения гидроксидов алюминия и хрома из растворимых солей сернокислого алюминия и сернокислого хрома алюминатом натрия с получением алюмохромового гидрогеля, пропиткой его гидроксидом калия и смешением с кальцийникельфосфатным гидрогелем, полученным осаждением 25%-ным раствором NH4OH из водных растворов хлоридов никеля и кальция фосфатом алюминия, с последующим пропитыванием водным раствором нитрата кобальта (SU 670324 А1, 30.06.1975). Состав полученного катализатора, мас.%: оксид хрома 13,5-14,6; оксид кальция 1,0-1,5; оксид кобальта 0,1-1,0; фосфат кальция 6,3-7,2; фосфат никеля 1,0-2,0 и оксид алюминия - остальное. При использовании известного катализатора для дегидрирования пропана выход пропилена довольно низкий и составляет 21,45% при селективности процесса 67,5%, а известный способ получения сложного по составу катализатора многостадиен и длителен по времени.

Наиболее близким по совокупности признаков к заявляемому техническому решению является способ получения катализатора для дегидрирования олефинов, включающий стадии осаждения алюмохромового гидрогеля из водных растворов солей алюминия и хрома гидроксидом аммония при температуре от 50F (10°С) до 100F (37,8°С) и рН раствора от 5,2-8,5, промывку, отделение суспензии гидроксидов, высушивание при 100 F (37,8°С) и прокаливание при 750F (400°С) от 3-х до 36 часов (US 2536085, 02.10.1951). Способ позволяет получить катализатор, содержащий 10% Cr2О3 и 90% Al2О3.

Недостатком известного катализатора является его низкая селективность при дегидрировании парафиновых углеводородов, которая для дегидрирования пропана в пропилен не превышает 50%.

Техническим результатом предлагаемого изобретения является упрощение способа получения катализатора, повышение активности катализатора и степени селективности при дегидрировании парафиновых углеводородов в соответствующие олефины.

Технический результат достигается тем, что способ получения алюмохромового катализатора для дегидрирования парафиновых углеводородов включает приготовление смеси насыщенного раствора водорастворимых солей хрома и алюминия, нагрев смеси до температуры 80-90°С, осаждение алюмохромового гидроксида пропусканием через насыщенный раствор газообразного аммиака до рН раствора 9,5-10, высушивание образовавшейся суспензии гидроксидов при 100-120°С и последующее прокаливание порошка при температуре не выше 550°С в течение не более 5 часов, при этом исходные компоненты берут в таких количествах, чтобы обеспечить после стадии прокаливания получение состава катализатора в пересчете на оксиды, мас.%: оксиды хрома 10-30, оксид алюминия - остальное.

В качестве водорастворимых солей хрома и алюминия преимущественно используют их нитраты, хлориды или двойные сульфоаммонийные соли.

Катализатор, полученный указанным способом, содержит смесь оксидов хрома (VI), хрома (III) и оксид алюминия при следующем соотношении, мас.%: смесь оксидов хрома (Cr2О3+CrO3) 10-30, оксид алюминия - остальное,

при этом содержание оксида хрома (VI) в смеси (Cr2О3+CrO3) составляет не менее 20 мас.%.

Полученный катализатор имеет величину удельной поверхности 250-350 м2/г и содержит оксида хрома (VI) в смеси в количестве не менее 20 мас.%.

Заявляемая совокупность признаков способа: использование газообразного аммиака для осаждения алюмохромового гидроксида в заявленном узком интервале рН раствора при температуре нагрева смеси насыщенных солей, температура высушивания суспензии и термический отжиг привели к неожидаемому эффекту, а именно к получению катализатора, обладающего высокой активностью.

Сущность способа подтверждается примерами.

Пример 1

Для получения катализатора, содержащего 15 мас.% оксидов хрома и 85 мас.% оксида алюминия, готовят насыщенный раствор нитратов алюминия и хрома, для чего растворяют в воде 112 г нитрата алюминия (в пересчете на безводный), добавляют в него 15 г нитрата хрома (в пересчете на безводный), после полного растворения солей нагревают смесь до 80°С и пропускают в нее газообразный аммиак до достижения рН раствора 9,5. Температура смеси за счет экзотермической реакции растворения аммиака поднимается до 90°С, аммиак пропускают до полного осаждения гидроксидов алюминия и хрома. После чего гидрогель быстро промывают деионизированной водой, суспензию высушивают при 120°С, затем температуру поднимают до 550°С, прокаливают продукт в течение 3 часов, затем охлаждают и анализируют известными методами.

Содержание в катализаторе хрома (VI) в смеси (Cr2О3+CrO3) составляет 30 мас.%, удельная поверхность катализатора равна 350 м2/г.

Пример 2

Все как в примере 1, но нитраты алюминия и хрома взяты в количестве на получение конечного материала, содержащего 30 мас.% оксидов хрома и 70 мас.% оксида алюминия.

Удельная поверхность полученного катализатора 280 м2/г, а содержание хрома (VI) в смеси (Cr2О3+CrO3) составляет 20 мас.%.

Пример 3

В этом примере используют водорастворимые хлориды алюминия и хрома, взятые в количестве на получение конечного материала, содержащего 10 мас.% оксидов хрома и 90 мас.% оксида алюминия, газообразный аммиак пропускают в насыщенный раствор хлоридов до рН раствора 10. Далее, как в примере 1, но высушивание суспензии гидроксидов проводят при 100°С, прокаливание проводят при 500°С в течение 5 часов.

Удельная поверхность полученного катализатора составляет 250 м2/г, содержание оксида хрома (VI) в смеси (Cr2О3+CrO3) составляет 25 мас.%.

Катализатор, полученный в соответствии с приведенными примерами, представляет собой сыпучий порошок коричневого цвета, частицы которого имеют цеолитоподобную структуру с удельной поверхностью 250-350 м2/г, с узким распределением цилиндрической формы каналов диаметром около 20Å.

Так как полученные порошки оказались рентгеноаморфными, определение химического и фазового состава, а также соотношение Cr(III) и Cr(VI) в составе катализатора дегидрирования проводили методами аналитической химии.

Удельную поверхность определяли методом БЭТ.

Морфологию частиц определяли с помощью сканирующего микроскопа.

В составе всех катализаторов методом магнитной восприимчивости обнаружено присутствие хрома (III).

Каталитическую активность образцов определяли в кварцевом реакторе проточного типа со стационарным слоем катализатора при температуре 550°С и расходе пропана 9,4-9,8 см3/мин (564-588 ч-1).

Использование полученных катализаторов для дегидрирования пропана показало, что их селективность по пропилену составляет 93-97-% при конверсии 35-38%. Коксование во всех случаях практически отсутствует.

Наличие указанных примеров не ограничивает возможности способа. Так использование других растворимых солей, таких как двойные сульфоаммонийные соли хрома и алюминия, позволяет получать катализатор, обладающий такими же высокими параметрами селективности и конверсии, как и в указанных примерах.

В настоящее время обсуждается механизм действия полученного катализатора. По всей вероятности наличие в нем хрома валентности (III), также как и высокое содержание в катализаторе хрома (VI) и высокая удельная поверхность, оказывает такое влияние на его активность.

Таким образом, предлагаемый способ по сравнению с прототипом более эффективен, его продолжительность на стадии прокаливания не превышает 5 часов (в прототипе до 32 часов), катализатор, полученный по предлагаемому способу, обладает высокой активностью, селективностью при дегидрировании парафиновых углеводородов, которая в 1,5 и более раз выше по сравнению с катализатором, полученным по прототипу.

Кроме того, катализатор имеет повышенный срок службы за счет уменьшения образования кокса.

Похожие патенты RU2318593C1

название год авторы номер документа
ПЛАЗМОХИМИЧЕСКИЙ СПОСОБ ПОЛУЧЕНИЯ АЛЮМОХРОМОВОГО КАТАЛИЗАТОРА ДЛЯ ДЕГИДРИРОВАНИЯ УГЛЕВОДОРОДОВ 2007
  • Балихин Игорь Львович
  • Берестенко Виктор Иванович
  • Диденко Людмила Павловна
  • Домашнев Игорь Анатольевич
  • Колесникова Александра Михайловна
  • Куркин Евгений Николаевич
  • Савченко Валерий Иванович
  • Торбов Владимир Иванович
  • Троицкий Владимир Николаевич
  • Шульга Юрий Макарович
RU2347613C1
ПЛАЗМОХИМИЧЕСКИЙ СПОСОБ ПОЛУЧЕНИЯ КАТАЛИЗАТОРА ДЛЯ ДЕГИДРИРОВАНИЯ УГЛЕВОДОРОДОВ 2006
  • Алдошин Сергей Михайлович
  • Балихин Игорь Львович
  • Берестенко Виктор Иванович
  • Диденко Людмила Павловна
  • Домашнев Игорь Анатольевич
  • Колесникова Александра Михайловна
  • Куркин Евгений Николаевич
  • Савченко Валерий Иванович
  • Торбов Владимир Иванович
  • Троицкий Владимир Николаевич
  • Трусов Лев Ильич
RU2318597C1
АЛЮМООКСИДНЫЙ НОСИТЕЛЬ, СПОСОБ ПОЛУЧЕНИЯ АЛЮМООКСИДНОГО НОСИТЕЛЯ И СПОСОБ ПОЛУЧЕНИЯ КАТАЛИЗАТОРА ДЕГИДРИРОВАНИЯ C-C ПАРАФИНОВЫХ УГЛЕВОДОРОДОВ НА ЭТОМ НОСИТЕЛЕ 2007
  • Ламберов Александр Адольфович
RU2350594C1
КАТАЛИЗАТОР ДЕГИДРИРОВАНИЯ ПАРАФИНОВЫХ УГЛЕВОДОРОДОВ, СПОСОБ ЕГО ПОЛУЧЕНИЯ И СПОСОБ ДЕГИДРИРОВАНИЯ УГЛЕВОДОРОДОВ С ИСПОЛЬЗОВАНИЕМ ЭТОГО КАТАЛИЗАТОРА 2016
  • Зыкова Анна Петровна
  • Бугрова Татьяна Александровна
  • Мамонтов Григорий Владимирович
RU2622035C1
СПОСОБ ПОЛУЧЕНИЯ КАТАЛИЗАТОРА ДЕГИДРИРОВАНИЯ ПАРАФИНОВЫХ УГЛЕВОДОРОДОВ 2007
  • Бусыгин Владимир Михайлович
  • Гильманов Хамит Хамисович
  • Бурганов Табриз Гильмутдинович
  • Палей Руслан Владимирович
  • Ламберов Александр Адольфович
  • Зиятдинов Азат Шаймуллович
  • Трифонов Сергей Владимирович
  • Нестеров Олег Николаевич
RU2325227C1
КАТАЛИЗАТОР ДЕГИДРИРОВАНИЯ ПАРАФИНОВЫХ УГЛЕВОДОРОДОВ C-C, СПОСОБ ЕГО ПОЛУЧЕНИЯ И СПОСОБ ДЕГИДРИРОВАНИЯ ПАРАФИНОВЫХ УГЛЕВОДОРОДОВ C-C 2010
  • Молчанов Виктор Викторович
  • Пахомов Николай Александрович
  • Кашкин Виталий Николаевич
  • Немыкина Елена Ивановна
  • Чернов Михаил Павлович
  • Парахин Олег Афанасьевич
RU2448770C1
КАТАЛИЗАТОР С НИЗКИМ СОДЕРЖАНИЕМ ОКСИДА ХРОМА ДЛЯ ДЕГИДРИРОВАНИЯ ИЗОБУТАНА И СПОСОБ ДЕГИДРИРОВАНИЯ ИЗОБУТАНА С ЕГО ИСПОЛЬЗОВАНИЕМ 2016
  • Бугрова Татьяна Александровна
  • Салаев Михаил Анатольевич
  • Мамонтов Григорий Владимирович
RU2627667C1
КАТАЛИЗАТОР, СПОСОБ ЕГО ПОЛУЧЕНИЯ И ПРОЦЕСС ДЕГИДРИРОВАНИЯ C-C-ПАРАФИНОВЫХ УГЛЕВОДОРОДОВ В ОЛЕФИНЫ 2006
  • Молчанов Виктор Викторович
  • Пахомов Николай Александрович
  • Исупова Любовь Александровна
  • Балашов Владимир Александрович
  • Харина Ирина Валерьевна
  • Кашкин Виталий Николаевич
  • Парахин Олег Афанасьевич
  • Чернов Михаил Павлович
  • Печериченко Владимир Алексеевич
  • Александров Александр Викторович
  • Пестов Виталий Валентинович
RU2322290C1
КАТАЛИЗАТОР ДЕГИДРИРОВАНИЯ ПАРАФИНОВЫХ И ИЗОПАРАФИНОВЫХ С-С УГЛЕВОДОРОДОВ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2021
  • Катаев Александр Николаевич
RU2772741C1
КАТАЛИЗАТОР, СПОСОБ ЕГО ПОЛУЧЕНИЯ И ПРОЦЕСС ДЕГИДРИРОВАНИЯ ПАРАФИНОВЫХ УГЛЕВОДОРОДОВ C-C В ОЛЕФИНОВЫЕ УГЛЕВОДОРОДЫ С ИСПОЛЬЗОВАНИЕМ КАТАЛИЗАТОРА 2014
  • Касьянова Лилия Зайнулловна
  • Ибрагимов Азат Нажипович
  • Гумеров Ильдар Дамирович
  • Жаворонков Дмитрий Александрович
  • Салахов Рашит Шайхуллович
RU2546646C1

Реферат патента 2008 года СПОСОБ ПОЛУЧЕНИЯ КАТАЛИЗАТОРА ДЛЯ ДЕГИДРИРОВАНИЯ УГЛЕВОДОРОДОВ И КАТАЛИЗАТОР, ПОЛУЧЕННЫЙ ЭТИМ СПОСОБОМ

Изобретение относится к области каталитической химии, в частности к способам приготовления алюмохромовых катализаторов и их составам для дегидрирования парафиновых углеводородов С25 до соответствующих олефинов. Описаны способ получения алюмохромового катализатора для дегидрирования парафиновых углеводородов и катализатор, полученный этим способом, который включает приготовление смеси насыщенного раствора водорастворимых солей хрома и алюминия, нагрев смеси до температуры 80-90°С, осаждение алюмохромового гидроксида пропусканием через насыщенный раствор газообразного аммиака до рН раствора 9,5-10, высушивание образовавшейся суспензии гидроксидов при 100-120°С и последующее прокаливание порошка при температуре не выше 550°С в течение не более 5 часов, при этом исходные компоненты берут в таких количествах, чтобы обеспечить после прокаливания состав катализатора в пересчете на оксиды, мас.%: оксиды хрома 10-30, оксид алюминия - остальное. Катализатор, полученный указанным способом, содержит смесь оксидов хрома (VI), хрома (III) и оксид алюминия при следующем соотношении, мас.%: смесь оксидов хрома 10-30 и оксид алюминия - остальное, при этом содержание оксида хрома (VI) в смеси составляет не менее 20 мас.%. Технический результат - упрощение способа получения катализатора, повышение его активности и степени селективности при дегидрирования парафиновых углеводородов. 2 н. и 2 з.п. ф-лы.

Формула изобретения RU 2 318 593 C1

1. Способ получения катализатора для дегидрирования углеводородов, включающий приготовление смеси насыщенного раствора водорастворимых солей хрома и алюминия, нагрев смеси до температуры 80-90°С, осаждение алюмохромового гидроксида пропусканием через насыщенный раствор газообразного аммиака до рН раствора 9,5-10, высушивание образовавшейся суспензии гидроксида при 100-120°С и последующее прокаливание порошка при температуре не выше 550°С в течение не более 5 ч, при этом исходные компоненты берут в таких количествах, чтобы обеспечить получение после стадии прокаливания состава катализатора в пересчете на оксиды, мас.%: оксиды хрома (III) и (VI) 10-30, оксид алюминия - остальное, при этом содержание оксида хрома (VI) в смеси оксидов хрома составляет не менее 20 мас.%.2. Способ по п.1, отличающийся тем, что в качестве водорастворимых солей хрома и алюминия преимущественно используют их нитраты, хлориды или двойные сульфоаммонийные соли.3. Катализатор, полученный указанным способом, включающий смесь оксидов хрома (VI) и (III) и оксид алюминия, отличающийся тем, что указанные компоненты он содержит при следующем соотношении, мас.%: смесь оксидов хрома 10-30, оксид алюминия остальное, при этом содержание оксида хрома (VI) в смеси оксидов хрома составляет не менее 20 мас.%.4. Катализатор по п.3, отличающийся тем, что он имеет величину удельной поверхности 250-350 м2/г.

Документы, цитированные в отчете о поиске Патент 2008 года RU2318593C1

СПОСОБ АВТОМАТИЧЕСКОЙ ФОКУСИРОВКИ КАМЕРЫ 2013
  • Сай Сергей Владимирович
  • Бородулин Вячеслав Владимирович
  • Сорокин Николай Юрьевич
RU2536085C1
SU 1571840 A1, 10.01.2000
КАТАЛИЗАТОР ДЛЯ ДЕГИДРИРОВАНИЯ ПАРАФИНОВЫХ УГЛЕВОДОРОДОВ 2000
  • Котельников Г.Р.
  • Титов В.И.
  • Лаврова Л.А.
RU2176157C1
Способ и приспособление для нагревания хлебопекарных камер 1923
  • Иссерлис И.Л.
SU2003A1
EP 1680385 A1, 19.07.2006.

RU 2 318 593 C1

Авторы

Алдошин Сергей Михайлович

Балихин Игорь Львович

Берестенко Виктор Иванович

Диденко Людмила Павловна

Домашнев Игорь Анатольевич

Колесникова Александра Михайловна

Куркин Евгений Николаевич

Савченко Валерий Иванович

Троицкий Владимир Николаевич

Даты

2008-03-10Публикация

2006-11-17Подача