ПЛАЗМОХИМИЧЕСКИЙ СПОСОБ ПОЛУЧЕНИЯ КАТАЛИЗАТОРА ДЛЯ ДЕГИДРИРОВАНИЯ УГЛЕВОДОРОДОВ Российский патент 2008 года по МПК B01J37/34 B01J23/26 B01J21/04 C07C5/333 

Описание патента на изобретение RU2318597C1

Изобретение относится к области каталитической химии, в частности к способам получения алюмохромовых катализаторов для дегидрирования парафиновых углеводородов преимущественно С25 до соответствующих олефинов с использованием низкотемпературной плазмы.

В последние годы во всем мире непрерывно возрастает интерес к процессам дегидрирования легких углеводородов. Это связано с непрерывно возрастающим спросом на олефиновые и диолефиновые углеводороды (пропилен, н-бутены, изобутилен, бутадиен, изопрен, стирол и его производные), которые находят широкое применение в различных химических производствах: для получения синтетических каучуков (СК), пластмасс, компонентов автомобильного топлива и других ценных химических продуктов. Все это стимулирует разработку новых более эффективных процессов дегидрирования способов получения катализаторов.

Патенты по способам получения алюмохромовых катализаторов можно условно разделить на две основные группы.

Первая группа сама многочисленная и включает приготовление катализатора пропиткой носителя, состоящего из оксида алюминия, раствором, содержащим соединения хрома и модифицирующие добавки, с последующей сушкой и прокаливанием полученного материала до получения готового к использованию катализатора (Пат. Великобритании №2162082, В01J 23/26, 21/04, 1985; RU 1736034 С, 20.01.1995; SU 1836140, МПК В01J 23/26, 21/06, С07С 5/333, 23.08.1993; RU 2026110 С1, 09.01.1995; RU 2160634 С1, 20.12.2000; RU 2256499 С1, 20.07.2005; RU 2271860 С1, 20.03.2006 и др.).

Вторая группа - это по существу одни из первых изобретений получения алюмохромовых катализаторов для дегидрирования углеводородов. Суть их сводится к приготовлению раствора из смеси исходных водорастворимых солей алюминия и хрома, добавлению в раствор щелочного реагента, при взаимодействии компонентов из раствора происходит выпадение алюмохромового гидроксида, который отделяют, сушат и прокаливают до получения готового к использованию катализатора (US 2536085, 02.10.1951; US 3327005, 20.06.1967; SU 670324 A1, 30.06.1975; SU 706997 A1, 20.03.2001; SU 725311 A1, 20.03.2001; 1571840 A1, 10.01.2000 и др.).

Каждый из указанных способов имеет свои недостатки и преимущества, но тем не менее решает очень важную задачу - получение необходимых для страны продуктов - олефинов.

Общим недостатком этих способов является наличие нескольких стадий в процессе приготовления катализаторов, что делает эти способы длительными по времени (общее время процесса может достигать от 10 до 32 часов).

Резко сократить время приготовления катализатора можно за счет использования низкотемпературной плазмы.

Известно, что плазмохимический синтез неорганических соединений характеризуется высокой производительностью и сравнительно невысокой энергоемкость процесса (RU 2073638 С1, 20.02.1997, 2119454 C1, 27.09.1998, 2153016 C1, 20.07.2000).

Патентный поиск показал, что отсутствуют плазмохимические способы, целенаправленные на получение алюмохромовых катализаторов.

Задачей предлагаемого изобретения является разработка плазмохимического способа получения катализатора для дегидрирования парафиновых углеводородов.

Техническим результатом изобретения является повышение производительности способа, выхода, чистоты целевого материала и его дисперсности.

Технический результат достигается тем, что плазмохимический способ получения катализатора для дегидрирования углеводородов включает термическую обработку исходных реагентов, взятых в виде порошков алюминия и карбонила хрома в потоке воздушной низкотемпературной плазмы, при этом реагенты подают раздельно в поток воздушной плазмы и реактор в виде аэрозоля с газом-носителем аргоном в количестве, необходимом для получения катализатора, содержащего 10-25 мас.% оксида хрома и 75-90 мас.% оксида алюминия, который в виде пылегазового потока охлаждают до температуры 30-50°С и извлекают.

Способ получения катализатора может быть с разным успехом осуществлен в любом из известных плазмохимических реакторов (SU 1135414 А1, 15.01.1990; SU 1549578 A1, 15.03.1996; RU 2270536 С9, 20.02.2006; RU 2252817 С1, 27.05.2005).

Примеры получения катализатора были отработаны с использованием реактора, описанного в патенте RU 2252817 С1, представленного на чертеже, где отображены основные узлы устройства плазмохимического реактора: источник СВЧ-энергии 1, разрядная камера 2, узел ввода 3, реакционная камера 4, узел ввода 5, дозатор 6, реакционная камера 7, дозатор 8, теплообменник 9, сборник порошка 10.

Пример 1

Для получения катализатора (состава 75% Al2O3+25% Cr2O3) исходный порошок алюминия (АСД-4) вводят с помощью дозатора 6 в виде аэрозоля с газом-носителем аргоном в реакционную камеру 4 длиной 100 мм через узел ввода 3 с одним отверстием, открывающимся в объем реакционной камеры под углом 45° к оси камеры. Порошок алюминия подают с расходом 180 г/ч газом-носителем аргоном в поток воздушной плазмы, формируемой в разрядной камере 2. Расход газа-носителя составляет 0,1 м3/ч. Ввод СВЧ-энергии 4,5 кВт осуществляется источником 1, среднемассовая температура плазмообразующего газа на входе в реакционную камеру составляет 2600 К, а расход плазмообразующего воздуха составляет 2,2 м3/ч. Порошок карбонила хрома (Cr(СО)6) с помощью дозатора 8 вводят с расходом 246 г/ч в виде аэрозоля с газом-носителем аргоном (0,2 м3/ч) ниже по потоку в реакционную камеру 7 длиной 200 мм через узел ввода 5. Целевой продукт в виде пылегазового потока охлаждается в теплообменник 9 до температуры 30-50°С и направляется в фильтр-сборник порошка 10, на котором порошок осаждается на внутренней поверхности фильтрующего рукава, а отходящие газы выводят из установки (на чертеже не показано).

По данным количественного химического анализа было установлено, что целевой продукт имеет состав: 75% Al2O3+25% Cr2О3, и содержит в Cr2О3 около 2 мас.% хрома (+6).

Катализатор представляет собой сыпучий порошок зеленоватого цвета со средним размером частиц 55 нм, преимущественно сферической формы и имеет удельную поверхность 35 м2/г.

Выход катализатора в пересчете на содержание хрома в гексакарбониле составляет 98%.

Пример 2

Для получения катализатора состава (90% Al2O3+10% Cr2O3) исходный порошок алюминия (АСД-4) вводят с помощью дозатора 6 в виде аэрозоля с газом-носителем аргоном в реакционную камеру 4 длиной 100 мм через узел ввода 3 с одним отверстием, открывающимся в объем реакционной камеры под углом 45° к оси камеры. Порошковый реагент подают с расходом 220 г/ч газом-носителем аргоном в поток воздушной плазмы, формируемой в разрядной камере 2. Расход газа-носителя составляет 0,1 м3/ч. Ввод СВЧ-энергии 5,0 кВт осуществляется источником 1, среднемассовая температура плазмообразующего газа на входе в реакционную камеру составляет 2400 К, а расход плазмообразующего воздуха составляет 2,3 м3/ч. Порошок карбонила хрома (Cr(СО)6) с помощью дозатора 8 вводят с расходом 300 г/ч в виде аэрозоля с газом-носителем аргоном (0,2 м3/ч) в реакционную камеру 7 длиной 200 мм через узел ввода 5. Целевой продукт в виде пылегазового потока охлаждается в теплообменнике 9 до температуры 30-50°С и направляется в фильтр-сборник порошка 10, на котором порошок осаждается на внутренней поверхности фильтрующего рукава, а отходящие газы выводят из установки (на чертеже не показано).

По данным количественного химического анализа было установлено, что целевой продукт имеет состав: 10% Al2O3+10% Cr2О3, и содержит в Cr2О3 около 1,5 мас.% хрома (+6).

Катализатор представляет собой сыпучий порошок зеленоватого цвета со средним размером частиц 70 нм, преимущественно сферической формы и имеет удельную поверхность 25 м2/г.

Выход катализатора в пересчете на содержание хрома в гексакарбониле составляет 99%.

Общее время синтеза катализатора по примерам, включая охлаждение продукта и его извлечение из реактора, не превышает 30 минут.

Производительность способа получения катализатора, определяемая расходом исходного порошка карбонила, в 10-50 раз выше, чем в известных способах.

Катализатор, полученный по предлагаемому способу, имеет средний размер частиц от 40 до 75 нм, удельную поверхность не менее 25 м2/г.

Как показали предварительные эксперименты, указанный катализатор, полученный по предлагаемому способу, показал хорошие результаты, в частности, при использовании в мембранно-каталитических системах при дегидрировании легких углеводородов.

Похожие патенты RU2318597C1

название год авторы номер документа
ПЛАЗМОХИМИЧЕСКИЙ СПОСОБ ПОЛУЧЕНИЯ АЛЮМОХРОМОВОГО КАТАЛИЗАТОРА ДЛЯ ДЕГИДРИРОВАНИЯ УГЛЕВОДОРОДОВ 2007
  • Балихин Игорь Львович
  • Берестенко Виктор Иванович
  • Диденко Людмила Павловна
  • Домашнев Игорь Анатольевич
  • Колесникова Александра Михайловна
  • Куркин Евгений Николаевич
  • Савченко Валерий Иванович
  • Торбов Владимир Иванович
  • Троицкий Владимир Николаевич
  • Шульга Юрий Макарович
RU2347613C1
СПОСОБ ПРИГОТОВЛЕНИЯ КАТАЛИЗАТОРА ДЛЯ ДЕГИДРИРОВАНИЯ ПАРАФИНОВЫХ УГЛЕВОДОРОДОВ 2020
  • Каримов Олег Хасанович
  • Каримов Эдуард Хасанович
  • Даминев Рустем Рифович
  • Мовсумзаде Эльдар Мирсамедович
RU2740558C1
СПОСОБ ПРИГОТОВЛЕНИЯ КАТАЛИЗАТОРА ДЛЯ ДЕГИДРИРОВАНИЯ ПАРАФИНОВЫХ УГЛЕВОДОРОДОВ 2014
  • Каримов Олег Хасанович
  • Даминев Рустем Рифович
  • Касьянова Лилия Зайнулловна
  • Каримов Эдуард Хасанович
RU2539300C1
СПОСОБ ПОЛУЧЕНИЯ КАТАЛИЗАТОРА ДЛЯ ДЕГИДРИРОВАНИЯ УГЛЕВОДОРОДОВ И КАТАЛИЗАТОР, ПОЛУЧЕННЫЙ ЭТИМ СПОСОБОМ 2006
  • Алдошин Сергей Михайлович
  • Балихин Игорь Львович
  • Берестенко Виктор Иванович
  • Диденко Людмила Павловна
  • Домашнев Игорь Анатольевич
  • Колесникова Александра Михайловна
  • Куркин Евгений Николаевич
  • Савченко Валерий Иванович
  • Троицкий Владимир Николаевич
RU2318593C1
УСТАНОВКА И СПОСОБ ПОЛУЧЕНИЯ НАНОДИСПЕРСНЫХ ПОРОШКОВ В ПЛАЗМЕ СВЧ РАЗРЯДА 2003
  • Балихин И.Л.
  • Берестенко В.И.
  • Домашнев И.А.
  • Куркин Е.Н.
  • Троицкий В.Н.
RU2252817C1
СПОСОБ ПОЛУЧЕНИЯ НАНОДИСПЕРСНЫХ ПОРОШКОВ 2013
  • Григоров Игорь Георгиевич
  • Ермаков Алексей Николаевич
  • Лужкова Ирина Викторовна
  • Зайнулин Юрий Галиулович
  • Малашин Станислав Иванович
  • Добринский Эдуард Константинович
RU2537678C1
СПОСОБ ПОЛУЧЕНИЯ НАНОКРИСТАЛЛИЧЕСКИХ ПОРОШКОВ КРЕМНИЯ 2007
  • Белогорохов Александр Иванович
  • Пархоменко Юрий Николаевич
  • Трусов Лев Ильич
RU2359906C2
СПОСОБ ПОЛУЧЕНИЯ НАНОДИСПЕРСНОГО ПОРОШКА ОКСИДА АЛЮМИНИЯ 2007
  • Степанов Игорь Анатольевич
  • Андриец Сергей Петрович
  • Круглов Сергей Николаевич
  • Мазин Владимир Ильич
  • Кутявин Эдуард Михайлович
  • Кузнецов Юрий Михайлович
  • Дедов Николай Владимирович
  • Селиховкин Александр Михайлович
  • Сенников Юрий Николаевич
RU2353584C2
КАТАЛИЗАТОР, СПОСОБ ЕГО ПОЛУЧЕНИЯ И ПРОЦЕСС ДЕГИДРИРОВАНИЯ C-C-ПАРАФИНОВЫХ УГЛЕВОДОРОДОВ В ОЛЕФИНЫ 2006
  • Молчанов Виктор Викторович
  • Пахомов Николай Александрович
  • Исупова Любовь Александровна
  • Балашов Владимир Александрович
  • Харина Ирина Валерьевна
  • Кашкин Виталий Николаевич
  • Парахин Олег Афанасьевич
  • Чернов Михаил Павлович
  • Печериченко Владимир Алексеевич
  • Александров Александр Викторович
  • Пестов Виталий Валентинович
RU2322290C1
СПОСОБ И УСТАНОВКА ДЛЯ ПОЛУЧЕНИЯ НАНОПОРОШКОВ С ИСПОЛЬЗОВАНИЕМ ТРАНСФОРМАТОРНОГО ПЛАЗМОТРОНА 2009
  • Уланов Игорь Максимович
  • Литвинцев Артем Юрьевич
  • Исупов Михаил Витальевич
RU2406592C2

Реферат патента 2008 года ПЛАЗМОХИМИЧЕСКИЙ СПОСОБ ПОЛУЧЕНИЯ КАТАЛИЗАТОРА ДЛЯ ДЕГИДРИРОВАНИЯ УГЛЕВОДОРОДОВ

Изобретение относится к области каталитической химии, в частности к способам получения алюмохромовых катализаторов для дегидрирования парафиновых углеводородов преимущественно C2-C5 до соответствующих олефинов с использованием низкотемпературной плазмы. Сущность: плазмохимический способ получения катализатора для дегидрирования углеводородов включает термическую обработку исходных реагентов, взятых в виде порошков алюминия и карбонила хрома, в потоке воздушной низкотемпературной плазмы, при этом реагенты подают раздельно в поток воздушной плазмы и реактор в виде аэрозоля с газом-носителем аргоном в количестве, необходимом для получения катализатора, содержащего 10-25 мас.% оксида хрома и 75-90 мас.% оксида алюминия, который в виде пылегазового потока охлаждают до температуры 30-50°С и извлекают. Техническим результатом изобретения является повышение производительности способа, выхода, чистоты целевого материала и его активности. 1 ил.

Формула изобретения RU 2 318 597 C1

Плазмохимический способ получения катализатора для дегидрирования углеводородов, включающий термическую обработку исходных реагентов, взятых в виде порошков алюминия и карбонила хрома, в потоке воздушной низкотемпературной плазмы, при этом реагенты подают раздельно в поток воздушной плазмы и реактор в виде аэрозоля с газом-носителем аргоном в количестве, необходимом для получения катализатора, содержащего 10-25 мас.% оксида хрома и 75-90 мас.% оксида алюминия, который в виде пылегазового потока охлаждают до температуры 30-50°С и извлекают.

Документы, цитированные в отчете о поиске Патент 2008 года RU2318597C1

СПОСОБ АВТОМАТИЧЕСКОЙ ФОКУСИРОВКИ КАМЕРЫ 2013
  • Сай Сергей Владимирович
  • Бородулин Вячеслав Владимирович
  • Сорокин Николай Юрьевич
RU2536085C1
SU 1571840 A1, 10.01.2000
КАТАЛИЗАТОР ДЛЯ ДЕГИДРИРОВАНИЯ ПАРАФИНОВЫХ УГЛЕВОДОРОДОВ 2000
  • Котельников Г.Р.
  • Титов В.И.
  • Лаврова Л.А.
RU2176157C1
Способ и приспособление для нагревания хлебопекарных камер 1923
  • Иссерлис И.Л.
SU2003A1
ЕР 1680385, 19.07.2006.

RU 2 318 597 C1

Авторы

Алдошин Сергей Михайлович

Балихин Игорь Львович

Берестенко Виктор Иванович

Диденко Людмила Павловна

Домашнев Игорь Анатольевич

Колесникова Александра Михайловна

Куркин Евгений Николаевич

Савченко Валерий Иванович

Торбов Владимир Иванович

Троицкий Владимир Николаевич

Трусов Лев Ильич

Даты

2008-03-10Публикация

2006-11-17Подача