КОМПОЗИЦИОННЫЙ МАТЕРИАЛ ДЛЯ ВНЕПЕЧНОЙ ОБРАБОТКИ РАСПЛАВА СТАЛИ (ВАРИАНТЫ) Российский патент 2008 года по МПК C21C7/06 C21C7/64 

Описание патента на изобретение RU2318878C1

Изобретение относится к области черной металлургии и может быть использовано в сталеплавильном производстве, в частности для раскисления и десульфурации сталей с ограниченным содержанием кремния или не содержащих в своем составе этот элемент.

Известен композиционный материал для внепечной обработки расплава стали, содержащий, мас.%: магний 10-15, кальций 12-15, барий 8-10, алюминий - остальное, причем модификатор выполнен в виде плотных гранул фракцией 1,0-1,5 мм (см. п. РФ №2228384 по кл. С22С 35/00, заявл. 24.12.2002, опубл. 10.05.2004. Модификатор для стали).

К недостаткам этого состава следует отнести слабое модифицирующее воздействие, связанное с одновременным взаимодействием с расплавленным металлом и алюминия, и других высокоактивных элементов - кальция, бария, магния. В результате последние в значительной степени расходуются на раскисление, что снижает степень обессеривания стали и модифицирования включений. Поэтому на практике для повышения эффективности модифицирования и обессеривания высокоактивные элементы вводят в расплав после завершения раскисления стали алюминием. В результате кальций, барий и др. расходуются преимущественно на десульфурацию и модификацию стали, что приводит к повышению ее качества за счет снижения загрязненности неметаллическими включениями и улучшения всего комплекса механических свойств.

Наиболее близким по технической сущности, достигаемому результату и выбранным в качестве прототипа является композиционный материал для внепечной обработки расплава стали, используемый в качестве наполнителя проволоки, состоящей из стальной оболочки и порошкового наполнителя. Порошковый наполнитель содержит в мас.%: кальций 25-45, железный порошок 55-75, причем соотношение между составляющими частями проволоки установлено следующим, мас.%: порошковый наполнитель 51-70, стальная оболочка 30-49 (см. п. РФ №2242521 по кл. С21С 7/00, заявл. 15.07.2002, опубл. 20.12.2004 "Проволока для внепечной обработки металлургических расплавов").

Основным недостатком указанного состава вследствие высокой активности кальция является его недостаточная эффективность как раскислителя, десульфуратора и модификатора стали из-за слабой растворимости и высокой упругости паров кальция в расплаве. Пассивация кальция железным порошком, используемая в данном техническом решении, не может быть эффективным механизмом снижения его химической активности, т.к. приводит к низкой степени десульфурации стали, большому общему остаточному содержанию неметаллических включений при малой доле частиц, имеющих глобулярную форму, что сопровождается снижением прочностных и пластических свойств металла.

При создании изобретения в соответствии с первым вариантом состава композиционного материала ставилась задача повышения прочности и пластичности стали.

Техническим результатом, получаемым при реализации изобретения в соответствии с первым вариантом состава композиционного материала, является оптимизация структурного состояния стали, а именно снижение загрязненности оксидными и сульфидными включениями, увеличение доли глобулярных включений в стали.

В соответствии с первым вариантом изобретения указанная задача решается за счет того, что известный композиционный материал для внепечной обработки расплава стали, содержащий железо и кальций, согласно изобретению дополнительно содержит добавку, в качестве которой используют один или несколько элементов из группы, включающей магний, барий, стронций и редкоземельные металлы, при следующем соотношении компонентов, мас.%: кальций 25-45, указанная добавка 1-15, железо остальное, причем размер частиц композиционного материала не превышает 3 мм.

Композиционный материал в соответствии с первым вариантом изобретения может дополнительно содержать в составе добавки 1-5 мас.% плавикового шпата.

В качестве аналога и прототипа для композиционного материала в соответствии со вторым вариантом состава выбраны те же технические решения, что и для первого варианта состава. Им присущи те же недостатки, которые указаны выше.

При создании изобретения в соответствии со вторым вариантом состава композиционного материала также ставилась задача повышения прочности и пластичности стали.

Техническим результатом, получаемым при реализации изобретения в соответствии со вторым вариантом состава композиционного материала, также является оптимизация структурного состояния стали, а именно снижение загрязненности оксидными и сульфидными включениями, увеличение доли глобулярных включений в стали.

В соответствии со вторым вариантом изобретения указанная задача решается за счет того, что известный композиционный материал для внепечной обработки расплава стали, содержащий железо и кальций, согласно изобретению дополнительно содержит плавиковый шпат при следующем соотношении компонентов, мас.%: кальций 25-45, плавиковый шпат 1-5, железо - остальное, причем размер частиц композиционного материала не превышает 3 мм.

Исследования, проведенные по источникам патентной и научно-технической информации, показали, что заявляемый композиционный материал неизвестен и не следует явным образом из изученного уровня техники, т.е. соответствует критериям новизна и изобретательский уровень.

Заявляемый композиционный материал может быть изготовлен на любом предприятии, специализирующемся в данной отрасли, т.к. для этого требуются известные материалы и стандартное оборудование, и широко использован при производстве стальных изделий, т.е. является промышленно применимым.

Эффективность работы кальция как раскислителя, десульфуратора и модификатора стали наряду с такими известными технологическими параметрами, как марочный состав металла и температура расплава, соотношение глубины и диаметра ковша, форма существования этого элемента и т.д. существенно зависит от возможности "пассивации" кальция, а также гранулометрического состава его частиц. Поскольку кальций имеет низкие температуры плавления /851°С/ и кипения /1487°С/, при температурах обработки стали /1550-1600°С/ упругость его паров составляет 0,15-0,20 МПа. При таком давлении пары кальция, не успевая взаимодействовать с расплавом, стремительно удаляются из металла, имеет место значительный пироэффект и даже выбросы металла. Повысить эффективность кальция способны "пассиваторы", механизм действия которых в расплаве может быть неодинаковым.

Такой "пассиватор", как плавиковый шпат (применяемый во втором варианте изобретения), может частично блокировать поверхность кальция, а активные добавки, как магний, барий, стронций, редкоземельные металлы (применяемые в первом варианте изобретения), помимо блокировки поверхности за счет снижения парциального давления паров кальция увеличивают его "живучесть", т.е. продолжительность нахождения в расплаве. Результатом обоих механизмов является повышение коэффициента полезного действия работы кальция, в первую очередь, как десульфуратора и модификатора. Последнее имеет решающее значение в уменьшении количества и улучшении морфологии включений и за счет этого в повышении уровня механических свойств металла.

Количество вводимых активных добавок (магния, бария, стронция, редкоземельных металлов) не должно превышать 15 мас.%, иначе уменьшение общего содержания кальция как основного и наиболее универсального элемента с точки зрения раскисления, десульфурации и модифицирования стали в составе заявляемого композиционного материала приведет к снижению механических свойств металла. По этой же причине содержание плавикового шпата должно быть ограничено 5 мас.%. Содержание активных добавок и плавикового шпата не должно быть меньше 1 мас.%, т.к. в этом случае степень "пассивации" кальция недостаточна.

Опыты показали, что гранулометрический состав композиционного материала не должен превышать 3 мм. При большем размере частиц снижается эффект раскисления, десульфурации и модифицирования металла.

Заявляемый способ был опробован при производстве стали марки 08ПС, имеющей состав, мас.%: 0,06С; 0,01Si; 0,19Mn; 0,02S; 0.009Р; 0,03Сr; 0,03Ni; 0,08Cu; 0.04Al.

Композиционный материал получали механическим смешением в различных соотношениях гранул Са, Ва, Mg, Sr, а также предварительно раздробленных плавикового шпата, железа и РМЗ (Се), а состав, известный по прототипу, получали механическим смешиванием гранул Са и железного порошка. Химический состав композиционного материала в соответствии с первым вариантом изобретения приведен в таблице 1. Химический состав композиционного материала в соответствии со вторым вариантом изобретения приведен в таблице 2. Размеры частиц композиционного материала выполняли в трех вариантах: менее 2 мм, менее 3 мм, менее 4,5 мм. Из композиционного материала различного состава изготавливали порошковые проволоки диаметром 14 мм с соотношением между наполнителем и железной оболочкой 60:40 мас.% (возможен вариант введения композиционного материала в расплав в виде брикетов). Далее осуществляли внепечную обработку расплавов порошковой проволокой с наполнителем из подготовленного композиционного материала при расходе 1 кг проволоки на 1 т стали. Затем металл разливали и после охлаждения прокатывали конечный размер - лист толщиной 0,5 мм. В готовом металле посредством растровой, электронной и микрорентгеноспектральной микроскопии оценивали состав, количество и морфологию неметаллических включений, содержание серы, долю глобулярных частиц в общем количестве включений, а также механические свойства металла. Результаты оценки в соответствии с первым вариантом изобретения приведены в таблице 3. Результаты оценки в соответствии со вторым вариантом изобретения приведены в таблице 4.

Анализ таблиц 3 и 4 показывает, что при обработке стали композиционным материалом, состав которого соответствует прототипу, мала степень десульфурации стали (она составляет 48-61%), высока загрязненность оксидными и сульфидными неметаллическими включениям (она составляет 1,2-2,0 и 1,1-1,8 балла соответственно), мала доля модифицированных глобулярных включений (она составляет 50-55%), невысок предел прочности (он составляет 280-305 МПа) и относительное удлинение (оно составляет 20-30%).

При обработке стали композиционным материалом с составом в соответствии с первым вариантом изобретения по сравнению с прототипом /см. в таблицах 1 и 3 варианты химического состава и соответствующие им свойства стали 2, 3, 3а, 5, 6, 6а, 8, 9, 9а, 11, 12, 12а, 14, 15, 15а/ увеличивается степень десульфурации (она составляет 64-78%), уменьшается загрязненность металла оксидами и сульфидами (она составляет 1,0-1,1 и 0,5-0,7 балла соответственно), увеличивается доля глобулярных включений (она составляет 65-80%), повышается предел прочности (он составляет 310-335 МПа) и относительное удлинение (оно составляет 33-46%). Причем эти результаты получены лишь при размере частиц заявляемого материала, не превышающем 3 мм. Применение заявляемого материала с размером частиц 0-4,5 мм заметно снижает раскисляющие, десульфурирующие и модифицирующие свойства данного материала /см. варианты химического состава и соответствующие им свойства стали 3б, 6б, 9б, 12б, 15б/.

При обработке стали композиционным материалом с составом в соответствии со вторым вариантом изобретения по сравнению с прототипом /см. в таблицах 2 и 4 варианты химического состава и соответствующие им свойства стали 2, 3 и 3а/ увеличивается степень десульфурации (она составляет 63-70%), уменьшается загрязненность металла оксидами и сульфидами (она составляет 1,0÷1,1 и 0,6÷1,0 балла соответственно), увеличивается доля глобулярных включений (она составляет 57-68%), повышается предел прочности (он составляет 310÷315 Мпа) и относительное удлинение (оно составляет 31÷32%). Причем эти результаты получены лишь при размере частиц заявляемого материала, не превышающем 3 мм. Применение заявляемого материала с размером частиц 0-4,5 мм заметно снижает раскисляющие, десульфурирующие и модифицирующие свойства данного материала /см. в таблицах 2 и 4 вариант 3б химического состава и соответствующие ему свойства стали/.

Таким образом, анализ приведенных таблиц показывает, что за счет оптимизации структурного состояния стали, а именно снижения загрязненности оксидными и сульфидными включениями и увеличения доли глобулярных включений в стали, при осуществлении изобретения в соответствии как с первым вариантом, так и со вторым вариантом достигается повышение прочности и пластичности стали.

Таблица 1Химический состав композиционного материала в соответствии с первым вариантом изобретения.№ п/пСодержание, мас.%Суммарное содержание компонентов добавки, мас.%FeCaMgBaSrРМЗCaF21прототип6040------255,236,8-8---835134-15---15449,232,8-18---18555,236,88----86513415----15749,232,818----18855,236,8--8--895134--15--151049,232,8--18--181155,236,8---8-8125134---15-151349,232,8---20-2014543622222101551345352-151647,431,65553321

Таблица 2Химический состав композиционного материала в соответствии со вторым вариантом изобретения.№ п/пСодержание, мас.%FeCaCaF21 прототип6040-259,439,61357385455,236,88

Таблица 3Влияние химического состава композиционного материала по первому варианту изобретения на степень десульфурации, загрязненность включениями, морфологию включений и механические свойства стали.Хим. состав по таблицеГранулометрический состав, ммСтепень десульфурации, %Загрязненность металла включениями, баллДоля глобулярных включений, %σв, МПаδ, %ОксидыСульфиды1 прототип0-2571,21,155300281а прототип0-3611,21,155305301б прототип0-4,54821,8502802020-3641,10,7673303330-2681,10,765330330-3701,00,670335350-4,5451,31,3553203040-3481,21,3553102050-3701,00,7683103360-2731,00,768310460-3751,00,668320450-4,5601,21,1603003370-3581,31,2553002980-3701,10,7653203390-2721,00,665320350-3721,00,569325350-4,5591,21,16031030100-3611,31,25429030110-3721,10,67031036120-2751,00,6753153612а0-3781,00,5803203812б0-4,5621,31,15730030130-3631,41,37030018140-3721,00,56932038150-2721,00,5703354015а0-3751,00,5723354015б0-4,5631,31,46031030160-3621,31,36330030

Таблица 4Влияние химического состава композиционного материала по второму варианту изобретения на степень десульфурации, загрязненность включениями, морфологию включений и механические свойства стали.Хим. состав по таблице 1Гранулометрический состав, ммСтепень десульфурации, %Загрязненность металла включениями, балл Доля глобулярных включений, %σв, МПаδ, %оксидысульфиды1 прототип0-2571,21,155300281а прототип0-3611,21,155305301б прототип0-4,54821,8502802020-3631.11,0573103130-2691,00,668315320-3701.00,667315320-4,5611,21,1553002640-3551,11,15329518

Похожие патенты RU2318878C1

название год авторы номер документа
МАТЕРИАЛ ДЛЯ ВНЕПЕЧНОЙ ОБРАБОТКИ РАСПЛАВА СТАЛИ И ПОРОШКОВАЯ ПРОВОЛОКА С ЕГО ИСПОЛЬЗОВАНИЕМ 2006
  • Исхаков Альберт Ферзинович
  • Малько Сергей Иванович
  • Воронин Борис Васильевич
  • Григорьев Владимир Николаевич
  • Пащенко Сергей Витальевич
  • Радченко Юрий Анатольевич
  • Ховрин Александр Николаевич
RU2337974C2
НАПОЛНИТЕЛЬ ПОРОШКОВОЙ ПРОВОЛОКИ ДЛЯ ДЕСУЛЬФУРАЦИИ И МОДИФИЦИРОВАНИЯ ЧУГУНА 2006
  • Исхаков Альберт Ферзинович
  • Малько Сергей Иванович
  • Григорьев Владимир Николаевич
  • Пащенко Сергей Витальевич
  • Воронин Борис Васильевич
  • Радченко Юрий Анатольевич
  • Ховрин Александр Николаевич
  • Даценко Олег Николаевич
  • Журавлев Борис Васильевич
  • Невьянцев Алексей Игоревич
RU2337972C2
СПОСОБ ВНЕПЕЧНОЙ ОБРАБОТКИ УГЛЕРОДИСТЫХ И НИЗКОЛЕГИРОВАННЫХ СТАЛЕЙ 2012
  • Исхаков Альберт Ферзинович
  • Малько Сергей Иванович
  • Гольдштейн Владимир Яковлевич
  • Пащенко Сергей Витальевич
  • Радченко Юрий Анатольевич
  • Онищук Виталий Прохорович
RU2497955C1
СПОСОБ ВНЕПЕЧНОЙ ОБРАБОТКИ ЖЕЛЕЗОУГЛЕРОДИСТОГО РАСПЛАВА 2011
  • Исхаков Альберт Ферзинович
  • Малько Сергей Иванович
  • Гольдштейн Владимир Яковлевич
  • Григорьев Владимир Николаевич
  • Пащенко Сергей Витальевич
  • Радченко Юрий Анатольевич
  • Онищук Виталий Прохорович
RU2456349C1
СПОСОБ ОБРАБОТКИ ЖЕЛЕЗОУГЛЕРОДИСТОГО РАСПЛАВА И МАТЕРИАЛ ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2011
  • Исхаков Альберт Ферзинович
  • Малько Сергей Иванович
  • Гольдштейн Владимир Яковлевич
  • Григорьев Владимир Николаевич
  • Пащенко Сергей Витальевич
  • Радченко Юрий Анатольевич
  • Онищук Виталий Прохорович
RU2487174C2
НАПОЛНИТЕЛЬ ПОРОШКОВОЙ ПРОВОЛОКИ ДЛЯ ВНЕПЕЧНОЙ ОБРАБОТКИ МЕТАЛЛУРГИЧЕСКИХ РАСПЛАВОВ 2010
  • Исхаков Альберт Ферзинович
  • Малько Сергей Иванович
  • Гольдштейн Владимир Яковлевич
  • Григорьев Владимир Николаевич
  • Пащенко Сергей Витальевич
  • Радченко Юрий Анатольевич
  • Онищук Виталий Прохорович
RU2443785C1
ПОРОШКОВАЯ ПРОВОЛОКА ДЛЯ ВНЕПЕЧНОЙ ОБРАБОТКИ РАСПЛАВА СТАЛИ 2011
  • Вахрушев Виталий Николаевич
  • Никифоров Александр Леонидович
RU2467072C1
ПОРОШКОВАЯ ПРОВОЛОКА ДЛЯ ВНЕПЕЧНОЙ ОБРАБОТКИ ЖЕЛЕЗОУГЛЕРОДИСТОГО РАСПЛАВА (ВАРИАНТЫ) 2011
  • Исхаков Альберт Ферзинович
  • Малько Сергей Иванович
  • Гольдштейн Владимир Яковлевич
  • Григорьев Владимир Николаевич
  • Пащенко Сергей Витальевич
  • Радченко Юрий Анатольевич
  • Онищук Виталий Прохорович
RU2491354C2
ПРОВОЛОКА ДЛЯ ВНЕПЕЧНОЙ ОБРАБОТКИ МЕТАЛЛУРГИЧЕСКИХ РАСПЛАВОВ 2007
  • Исхаков Альберт Ферзинович
  • Малько Сергей Иванович
  • Гольдштейн Владимир Яковлевич
  • Григорьев Владимир Николаевич
  • Пащенко Сергей Витальевич
  • Радченко Юрий Анатольевич
RU2375462C2
СПОСОБ ПРОИЗВОДСТВА НИЗКОКРЕМНИСТОЙ СТАЛИ 2008
  • Луценко Андрей Николаевич
  • Бенедечук Игорь Борисович
  • Ерошкин Сергей Борисович
  • Водовозова Галина Сергеевна
  • Балдаев Борис Яковлевич
  • Прудов Константин Эдуардович
  • Кузнецов Сергей Николаевич
  • Трифонова Марина Ивановна
RU2353667C1

Реферат патента 2008 года КОМПОЗИЦИОННЫЙ МАТЕРИАЛ ДЛЯ ВНЕПЕЧНОЙ ОБРАБОТКИ РАСПЛАВА СТАЛИ (ВАРИАНТЫ)

Изобретение относится к черной металлургии и может быть использовано в сталеплавильном производстве, в частности для раскисления и легирования стали с ограниченным содержанием кремния. Композиционный материал содержит добавку, в качестве которой используют один или несколько элементов из группы, включающей магний, барий, стронций и редкоземельные металлы, при следующем соотношении компонентов, мас.%: кальций 25-45, указанная добавка 1-15, железо остальное. Композиционный материал дополнительно содержит плавиковый шпат при следующем соотношении компонентов, мас.%: кальций 25-45, плавиковый шпат 1-5, железо - остальное. Размер частиц композиционного материала не превышает 3 мм. Изобретение позволяет повысить прочность и пластичность стали за счет оптимизации структурного состояния стали, а именно снижение загрязненности оксидными и сульфидными включениями, увеличение доли глобулярных включений в стали. 2 н. и 1 з.п. ф-лы, 4 табл.

Формула изобретения RU 2 318 878 C1

1. Композиционный материал для внепечной обработки расплава стали, содержащий железо и кальций, отличающийся тем, что он дополнительно содержит добавку в виде одого или нескольких элементов из группы, включающей магний, барий, стронций и редкоземельные металлы при следующем соотношении компонентов, мас.%: кальций 25-45, добавка 1-15, железо - остальное, при этом размер его частиц не превышает 3 мм.2. Композиционный материал по п.1, отличающийся тем, что добавка дополнительно содержит 1-5 мас.% плавикового шпата.3. Композиционный материал для внепечной обработки расплава стали, содержащий железо и кальций, отличающийся тем, что он дополнительно содержит плавиковый шпат при следующем соотношении компонентов, мас.%: кальций 25-45, плавиковый шпат 1-5, железо - остальное, при этом размер его частиц не превышает 3 мм.

Документы, цитированные в отчете о поиске Патент 2008 года RU2318878C1

ПРОВОЛОКА ДЛЯ ВНЕПЕЧНОЙ ОБРАБОТКИ МЕТАЛЛУРГИЧЕСКИХ РАСПЛАВОВ 2002
  • Дюдкин Дмитрий Александрович
  • Бать Сергей Юрьевич
  • Кисиленко Владимир Васильевич
  • Онищук Виталий Прохорович
  • Гринберг Самуил Ефимович
RU2242521C2
МОДИФИКАТОР ДЛЯ СТАЛИ 2002
  • Наконечный Анатолий Яковлевич
  • Урцев В.Н.
  • Хабибулин Д.М.
  • Аникеев С.Н.
  • Платов С.И.
  • Капцан А.В.
RU2228384C1
СПОСОБ ОБРАБОТКИ СТАЛИ В КОВШЕ 2002
  • Ламухин А.М.
  • Зинченко С.Д.
  • Загорулько В.П.
  • Ордин В.Г.
  • Урюпин Г.П.
  • Филатов М.В.
  • Фогельзанг И.И.
  • Лятин А.Б.
  • Зекунов А.В.
  • Лебедев В.И.
RU2218422C2
US 4671820 А, 09.06.1987
Способ изготовления формованных керамических изделий 1943
  • Царицын М.А.
SU66305A1
БЫСТРОРАЗРУШАЮЩИЕСЯ ТАБЛЕТКИ С ПОКРЫТИЕМ 2013
  • Уолдман Джоэл Х.
  • Франзой Фернанда
  • Бин Энтони С.
RU2609836C2

RU 2 318 878 C1

Авторы

Исхаков Альберт Ферзинович

Малько Сергей Иванович

Воронин Борис Васильевич

Григорьев Владимир Николаевич

Пащенко Сергей Витальевич

Радченко Юрий Анатольевич

Ховрин Александр Николаевич

Чуватин Виктор Николаевич

Даты

2008-03-10Публикация

2006-04-26Подача