Изобретение относится к абразивным микропорошкам на основе оксида алюминия, используемым для шлифования, полирования и окончательной доводки поверхности высокоточных изделий из металла, стекла и камня, с целью придания им минимальной шероховатости поверхности и достижения высших классов точности размеров и геометрических форм.
Известен способ получения абразивного микропорошка для полирования на основе оксидов алюминия и железа состава, мас.%: Al2О3 - 90,0-99,9; Fe2O3 - 10,0-0,1, который включает стадии приготовления шихты из гидроксида алюминия, в частности гидраргиллита и железосодержащего сырья, механохимическую активацию шихты и ее последующую прокалку при 900-1300°С (см. патент России №2109026, М. кл. 6 C09G 1/02, C21D 6/00 от 20.04.1998).
Недостатками известного способа являются: а) высокая энергоемкость стадии прокалки, которую проводят при 900-1300°С; б) наличие газообразных выбросов и пылеунос продукта (до 5 мас.%) при прокалке; в) узкий диапазон размеров частиц готового продукта (от 0,3 до 2 мкм), что сужает области его применения.
Наиболее близким является способ получения мелкокристаллического корунда по патенту России №2093464, М. кл. 6 C01F 7/02 от 22.05.1996 г., согласно которому целевой продукт получают путем смешивания гидроксида алюминия с добавкой 1-20 мас.% затравочных кристаллов в виде механически активированного оксида алюминия или мелкокристаллического корунда, с последующей термопаровой обработкой смеси при температуре 350-400°С и давлении 30-400 атм.
Недостатком прототипа является полидисперсность целевого продукта на основе корунда (по данным таблиц 1-3 этого патента отношение максимального и минимального размеров кристаллов корунда лежит в широких пределах от 2 до 10, что по величине существенно больше такового отношения для размеров зерна абразивных микропорошков, предусмотренных ГОСТом 3647-80 "Материалы шлифовальные. Классификация. Зернистость и зерновой состав. Методы контроля"). Поэтому для получения абразивных микропорошков способом по прототипу необходимы дополнительные операции репульпации, классификации, фильтрации и сушки, приводящие к возрастанию себестоимости продукции.
Техническим результатом изобретения является снижение полидисперсности микропорошков на основе корунда, получение монодисперсного продукта с узким распределением кристаллов по размерам.
Технический результат достигается тем, что способ получения абразивных микропорошков на основе корунда, включает смешивание гидроксида алюминия с добавкой затравочных кристаллов и его последующую термопаровую обработку при давлении 30-400 атм, при этом при смешивании в гидроксид алюминия вместе с затравочными кристаллами вводят пассификатор роста кристаллов корунда в виде оксидных соединений фосфора или кремния в количестве 0,001-0,1 мас.% в пересчете на оксид фосфора или оксид кремния к Al2О3, а в качестве затравочных кристаллов используют мелкокристаллический α- оксид железа (III) или оксигидроксиды железа (III) в количестве 0,0005-0,3 мас.% к Al2O3, причем термопаровую обработку проводят при температурах 340-450°С.
Кроме того, в качестве оксидных соединений фосфора или кремния - пассификаторов роста кристаллов корунда - используют фосфорную кислоту, полифосфаты натрия, силикаты натрия или калия.
Проведенные исследования показали: а) при проведении термообработки гидроксида алюминия, например гидраргиллита, в замкнутом объеме, например в автоклаве, в условиях высоких (более 40 атм) парциальных давлений паров воды, которая, например, выделяется при дегидратации гидроксида алюминия согласно реакции:
2Al(ОН)3→Al2O3+3H2O↑,
нижняя температурная граница образования корунда по сравнению с прокалкой на воздухе (не менее 900°С) снижается до 375°С; б) формирование корунда при термообработке гидраргиллита, в замкнутом объеме в условиях высоких парциальных давлений паров воды протекает по механизму "растворения-осаждения" путем растворения кристаллов гидроксида алюминия, переноса через дисперсионную среду (пары воды) кристаллообразующего вещества к образовавшимся зародышам корунда и встраивания его в поверхностный слой кристалла. Лимитирующей стадией этого процесса может выступать как стадия образования зародышей равновесной фазы, так и массопереноса кристаллообразующего вещества к зародышам. Нами показано, что при механизме "растворения-осаждения" полидисперсная фаза формируется лишь в том случае, если процесс лимитируется зародышеобразованием. В этом случае зародыши новой фазы возникают в разные моменты времени, а при их последующем росте формируются кристаллы разного размера. Поэтому для получения корунда с узким распределением кристаллов по размерам необходимо, с одной стороны, понизить работу зародышеобразования, что достигается, например, путем введения затравочных кристаллов, а с другой - ввести в реакционную среду добавки, пассивирующие рост кристаллов корунда; в) установлено, что мелкокристаллический α-Fe2O3 с размером кристаллов менее 0,05 мкм1 (1Порошки α-Fe2О3 с размером кристаллов более 0,05 мкм обладают низкой реакционной способностью и практически не влияют на кинетику формирования и дисперсный состав корунда, образующегося при термопаровой обработке гидроксида алюминия) и еще в большей степени оксигидроксиды железа (III) α-, γ- или δ- модификаций, которые в процессе термообработки испытывают превращения в α-F2О3, являются эффективными заправочными кристаллами. При их введении в гидроксид алюминия температура начала образования корунда понижается до 340°С, исключается латентный период стадии зародышеобразования, уменьшается полидисперсность конечного продукта. Однако полученные при этом образцы корунда содержали единичные крупные кристаллы, что свидетельствует о необходимости введения в реакционную среду, наряду с затравочными кристаллами, и добавок, пассивирующих рост кристаллов корунда. Использование в качестве таких добавок оксидных соединений фосфора или кремния (фосфорная кислота, полифосфаты натрия, силикаты натрия или калия и др.) позволило исключить образование грубой фракции. Путем варьирования количества вводимых в гидроксид алюминия затравочных кристаллов и оксидных соединений фосфора или кремния можно варьировать средний размер близких к монодисперсным микропорошков на основе корунда от 1 до 100 мкм.
При введении затравочных кристаллов менее 0,0001 мас.% к Al2О3 при термопаровой обработке формируется полидисперсный продукт, а при введении затравочных кристаллов более 0,3 мас.% образуется корунд со средним размером кристаллов менее 1 мкм.
При введении добавки пассификатора роста кристаллов менее 0,0005 мас.% в пересчете на оксид фосфора или на оксид кремния к Al2O3 в конечном продукте присутствует небольшое количество (до 5 мас.%) грубой фракции, а при введении этой добавки более 0,1 мас.% протекает агрегация кристаллов корунда с образованием полидисперсного продукта.
Нижний предел температуры термопаровой обработки (340°С) обусловлен резким торможением процесса формирования корунда при более низких температурах, использование температур выше 450°С (верхний предел) экономически нецелесообразно из-за высоких энергетических затрат.
Изобретение иллюстрируется следующими примерами.
Пример 1 (по прототипу). 400 г гидраргиллита, содержащего 263 г Al2О3 и 137 г Н2О, тщательно смешивают с 13 г Al2О3 марки "чда" (5 мас.% затравочных кристаллов) в шаровой мельнице. 300 г смеси помещают в автоклав объемом 0,5 дм3 и подвергают термообработке при температуре 400°С и давлении паров воды 250 атм в течение 2 ч. Получают 100% корунд с размером кристаллов от 40 до 90 мкм.
Пример 2 (по предлагаемому способу). 400 г гидраргиллита, содержащего 263 г Al2O3 и 137 г H2O, тщательно смешивают с 0,8 г мелкокристаллического α- оксида железа (III), полученного термообработкой γ-FeOOH в растворе FeSO4 (0,3 мас.% затравочных кристаллов к Al2О3), и 0,36 г (в пересчете на 100%) фосфорной кислоты марки "хч" (0,1 мас.% Р2O5 к Al2О3) в шаровой мельнице. Берут 300 г смеси, помещают в автоклав объемом 0,5 дм3 и подвергают термообработке при температуре 400°С и парциальном давлении паров воды 250 атм в течение 2 ч. Получают 100% корунд с размером кристаллов от 1 до 2 мкм.
Примеры 3-7 проводят аналогично примеру 2. При этом варьируют вид и количество вводимых затравочных кристаллов и добавки пассификатора роста кристаллов. Конкретные параметры процесса синтеза и дисперсный состав микропорошков на основе корунда приведены в таблице.
Из таблицы видно, что предлагаемый способ получения абразивных микропорошков на основе корунда по сравнению с прототипом позволяет уменьшить диапазон разброса кристаллов корунда по размерам в 2-5 раз, что позволяет получать монодисперсные микропорошки на основе корунда с узким распределением кристаллов по размерам.
Параметры синтеза, состав и качественные показатели абразивных микропорошков
название | год | авторы | номер документа |
---|---|---|---|
ЭКОЛОГИЧЕСКИ ЧИСТЫЙ АБРАЗИВНЫЙ МИКРОПОРОШОК ДЛЯ ПОЛИРОВАНИЯ НА ОСНОВЕ ОКСИДОВ АЛЮМИНИЯ И 3D-МЕТАЛЛА И СПОСОБ ЕГО ПОЛУЧЕНИЯ | 1996 |
|
RU2109026C1 |
СПОСОБ ПОЛУЧЕНИЯ МЕЛКОКРИСТАЛЛИЧЕСКОГО КОРУНДА | 2002 |
|
RU2229441C1 |
СПОСОБ ПОЛУЧЕНИЯ МЕЛКОКРИСТАЛЛИЧЕСКОГО КОРУНДА | 1996 |
|
RU2093464C1 |
СПОСОБ ПОЛУЧЕНИЯ ЭКОЛОГИЧЕСКИ ЧИСТОГО МИКРОПОРОШКА ДЛЯ ПОЛИРОВАНИЯ НА ОСНОВЕ ОКСИДОВ АЛЮМИНИЯ И ЖЕЛЕЗА | 2001 |
|
RU2212425C2 |
СПОСОБ ПОЛУЧЕНИЯ МЕЛКОКРИСТАЛЛИЧЕСКОГО КОРУНДА | 1996 |
|
RU2092438C1 |
СПОСОБ ПОЛУЧЕНИЯ МЕЛКОКРИСТАЛЛИЧЕСКОГО КОРУНДА | 2007 |
|
RU2340557C2 |
СПОСОБ ПОЛУЧЕНИЯ СПЕЧЕННОГО МАТЕРИАЛА НА ОСНОВЕ α МОДИФИКАЦИИ ОКСИДА АЛЮМИНИЯ | 1992 |
|
RU2076083C1 |
СПОСОБ ПОЛУЧЕНИЯ КРАСНОГО ЖЕЛЕЗООКИСНОГО ПИГМЕНТА | 2016 |
|
RU2640550C1 |
Способ получения мелкокристаллического корунда | 2016 |
|
RU2664149C2 |
СПОСОБ ПОЛУЧЕНИЯ МЕЛКОКРИСТАЛЛИЧЕСКОГО КОРУНДА | 1999 |
|
RU2167817C2 |
Изобретение относится к абразивным микропорошкам на основе оксида алюминия, используемым для полирования, шлифования и окончательной доводки поверхности высокоточных изделий из металла, стекла и камня. Способ получения абразивных микропорошков на основе корунда включает смешивание гидроксида алюминия с добавкой затравочных кристаллов и его последующую термопаровую обработку при давлении 30-400 атм и температуре 340-450°С. В гидроксид алюминия вместе с затравочными кристаллами вводят пассификатор роста кристаллов корунда в виде оксидных соединений фосфора или кремния в количестве 0,001-0,1 мас.% в пересчете на оксид фосфора или оксид кремния к Al2О3. В качестве затравочных кристаллов используют мелкокристаллический α - оксид железа (III) или оксигидроксиды железа (III) в количестве 0,0005-0,3 мас.% к Al2O3. В качестве оксидных соединений фосфора или кремния - пассификаторов роста кристаллов корунда - используют фосфорную кислоту, полифосфаты натрия, силикаты натрия или калия. Изобретение позволяет получить монодисперсный продукт с узким распределением кристаллов по размерам. 1 табл.
СПОСОБ ПОЛУЧЕНИЯ МЕЛКОКРИСТАЛЛИЧЕСКОГО КОРУНДА | 1996 |
|
RU2093464C1 |
Абразивный материал и способ его получения | 1985 |
|
SU1712387A1 |
СПОСОБ ПОЛУЧЕНИЯ ОКСИДА МАГНИЯ | 1991 |
|
RU2038301C1 |
US 6440187 A, 27.08.2002 | |||
US 6613114 А, 02.09.2003 | |||
WO 2004096941 A1, 11.11.2004 | |||
УСТРОЙСТВО ДЛЯ ЗАПИСИ МЕХАНИЧЕСКИХ ХАРАКТЕРИСТИК БЫСТРОРАЗГОНЯЮЩИХСЯ ЭЛЕКТРОДВИГАТЕЛЕЙ | 0 |
|
SU294208A1 |
Авторы
Даты
2008-04-10—Публикация
2005-02-07—Подача