Изобретение относится к области очистки от сероводорода кислородсодержащих газов, воздуха и газовоздушных смесей, в которых содержание Н2S не превышает содержание кислорода, в частности газовоздушных смесей, образующихся при отдувке воздухом сероводорода из отработанных растворов золения при обработке кож; отходящих газов производства волокна нитрон; газовоздушных выбросов ям дегазации жидкой серы и др.
Известен способ очистки воздуха от сероводорода путем абсорбции поглотительным раствором, содержащим щелочной агент и дисульфокислоту фталоцианина кобальта (ДСФК), с последующей регенерацией насыщенного поглотителя продувкой воздухом с образованием элементной серы (Рыбаков Л.А. Щелочно-гидрохиноновый и щелочно-фталоцианиновый методы очистки аспирационных газов от сероводорода // Промышленная и санитарная очистка газов. - М.: ЦИНТИХИМНЕФТЕМАШ. - 1976. - №2. - С.2-3). Достоинствами этого способа являются высокая степень очистки воздуха и утилизация уловленного сероводорода в виде серы и тиосульфата натрия. Недостатками этого способа являются высокие капитальные затраты на установку очистки вследствие того, что используются громоздкие аппараты: абсорбер и флотатор (аппарат барботажного типа) с малоинтенсивным массообменом газ/жидкость. Окисление уловленного сероводорода в водно-щелочных растворах воздухом в барботажных аппаратах происходит довольно медленно даже в присутствии таких высокоактивных катализаторов окисления сернистых соединений кислородом, как ДСФК. Низкая скорость растворения кислорода в водных растворах ограничивает скорость окисления водно-щелочных растворов сероводорода.
Известен способ окислительной очистки растворов от сероводорода в центробежно-барботажном аппарате (ЦБА) с использованием катализатора тетрасульфоната фталоцианина кобальта тетранатриевой соли (ТСФК) (Заварухин С.Г., Кувшинов Г.Г., Гогина Л.В., Кундо Н.Н. Интенсификация процесса каталитической окислительной очистки растворов от сероводорода с использованием катализатора ТСФК в центробежно-барботажном реакторе // Химическая промышленность, 1999. - №2, С.90-94). Этот способ позволяет очень быстро окислять растворы, содержащие сероводород, в центробежно-барботажном аппарате (ЦБА). Однако в описанном выше способе продуктом, получаемым в результате очистки, является элементная сера. При очистке разбавленных растворов сероводорода такой способ, возможно, еще может быть реализован на существующих в настоящее время ЦБА, так как окисленный раствор, содержащий свежеобразованную мелкодисперсную серу, сразу же выводится с установки очистки. Но этот способ не пригоден для очистки от сероводорода газов, когда поглотительный раствор, циркулирует в установке очистки, и в нем накапливаются продукты, получаемые при окислении сероводорода, в данном случае элементная сера. Накапливающаяся в поглотительном растворе мелкодисперсная сера, оседая на стенках жидкостных линий и ЦБА, вызывает забивку этих жидкостных линий и «обрастание» серой самого центробежно-барботажного аппарата, что делает его эксплуатацию невозможной.
Наиболее близким к заявляемому способу является способ очистки технологических газов от сероводорода, включающий противоточный контакт газов с жидким основным поглотителем и абсорбцию сероводорода поглотителем в вихревых камерах с вращающимся газожидкостным слоем при продолжительности пребывания газов в слое от 0,001 до 0,1 сек (Пат. РФ 2245897, С10К 1/12, B01D 53/14, 53/52, 10.02.2005). Достоинством этого способа является то, что достигается высокая степень очистки газов от H2S при низких капитальных и эксплуатационных затратах за счет того, что используется высокоэффективный массообменный аппарат.
Недостатком прототипа является получение в результате очистки высокотоксичных отработанных растворов сульфидов щелочных и щелочно-земельных металлов высокой концентрации. Эти растворы необходимо утилизировать, что не всегда легко осуществимо.
В основу изобретения поставлена техническая задача - в случае очистки кислородсодержащих газов, в которых содержание сероводорода не превышает содержания кислорода, или в случае возможности дозирования в очищаемый газ кислорода в количестве, при котором содержание сероводорода не превышает содержания кислорода, осуществлять в вихревой камере с вращающимся газожидкостным слоем не только абсорбцию сероводорода из газа, но также и превращение улавливаемого сероводорода в нетоксичные растворимые кислородсодержащие соединения серы, преимущественно сульфаты и тиосульфата.
Задача решается способом очистки кислородсодержащих газов от сероводорода в вихревой камере с вращающимся газожидкостным слоем при продолжительности пребывания газов в слое от 0,001 до 0,1 с, включающим противоточный контакт газов с жидким основным поглотителем и абсорбцию сероводорода поглотителем. Очистке подвергают кислородсодержащий газ, в котором содержание сероводорода не превышает содержание кислорода. Поглотитель содержит растворимый катализатор для окисления гидросульфид-ионов кислородом в нетоксичные растворимые кислородсодержащие соединения серы, преимущественно сульфаты и тиосульфаты.
В качестве катализаторов могут быть использованы растворимая соль двухвалентного марганца, дисульфокислота фталоцианина кобальта, а также каталитическая система, содержащая дисульфокислоту фталоцианина кобальта и растворимую соль марганца.
При этом в вихревой камере с вращающимся газожидкостным слоем при контакте газа с жидкостью помимо улавливания сероводорода происходит также полное окисление уловленного сероводорода кислородом с образованием нетоксичных растворимых кислородсодержащих соединений серы, преимущественно сульфатов и тиосульфатов. Время пребывания жидкости в слое от 10 до 15 с; соотношение газ/жидкость составляет, мас.: 1-3.
Технический результат - высокая степень очистки газа от сероводорода с его одновременной утилизацией в виде нетоксичных растворимых кислородсодержащих соединений серы, преимущественно сульфатов и тиосульфатов.
Сущность изобретения иллюстрируется следующими примерами.
Пример 1.
В вихревую камеру центробежно-барботажного аппарата (ЦБА) с вращающимся газожидкостным слоем подают газовую смесь с расходом 100 м3/ч. Продолжительность пребывания газа в газожидкостном слое вихревой камеры 7·10-3 с. Схема предусматривает непрерывную циркуляцию поглотительного раствора, подаваемого в вихревую камеру ЦБА. В соответствии со схемой на выходе из ЦБА получают очищенный от H2S газ, который выбрасывают в атмосферу.
В качестве поглотителя используют 0,001 М раствор Na2CO3 с рН 8,2-8,4. Скорость циркуляции поглотительного раствора через вихревую камеру ЦБА составляет 0,83 дм3/мин (0,5 дм3 на 1 м3 газа). На очистку поступает газовая смесь, содержащая 0,04 об.% H2S, воздух - остальное.
В поглотительный раствор одновременно с подачей газовой смеси дозируют катализатор MnCl2 в количестве, обеспечивающем соотношение «сероводород: катализатор», равное 86,83 моль/моль.
Очистку проводят с непрерывным контролем наличия сероводорода в газовой смеси на выходе из ЦБА и йодометрическим контролем содержания в поглотительном растворе HS-, а также продуктов его окисления. Содержание сероводорода в очищенной газовоздушной смеси не превышает 5 мг/м3. В поглотительном растворе на выходе из ЦБА отсутствуют H2S, HS-- и S2--ионы. Основными продуктами окисления являются сульфат и тиосульфат натрия, элементная сера отсутствует. Установка работает в данном режиме 72 мин. Количество очищенного газа составляет 120,24 м3, количество уловленного и окисленного сероводорода - 2,16 г-моль (73,44 г).
Пример 2.
То же, что в примере 1, но содержание сероводорода в очищаемой газовоздушной смеси составляет 0,067 об.%.
Содержание сероводорода в очищенной газовоздушной смеси не превышает 5 мг/м3. В поглотительном растворе на выходе из ЦБА отсутствуют H2S, HS-- и S2--ионы. Основными продуктами окисления являются сульфат и тиосульфат натрия, элементная сера отсутствует. Установка работает в данном режиме 48 мин. Количество очищенного газа составляет 80,16 м3, количество уловленного и окисленного сероводорода - 2,41 г-моль (81,94 г).
Пример 3.
То же, что в примере 2, но соотношение «сероводород: катализатор» составляет 17,36 моль/моль.
Содержание сероводорода в очищенной газовоздушной смеси не превышает 5 мг/м3. В поглотительном растворе на выходе из ЦБА отсутствуют H2S, HS-- и S2--ионы. Основными продуктами окисления являются сульфат и тиосульфат натрия, элементная сера отсутствует. Установка работает в данном режиме 78 мин. Количество очищенного газа составляет 131,93 м3, количество уловленного и окисленного сероводорода - 3,96 г-моль (134,64 г).
Пример 4.
То же, что в примере 1, но содержание H2S в очищаемой газовоздушной смеси составляет 0,14 об.%.
Содержание сероводорода в очищенной газовоздушной смеси не превышает 5 мг/м3. В поглотительном растворе на выходе из ЦБА отсутствуют H2S, HS-- и S2--ионы. Основными продуктами окисления являются сульфат и тиосульфат натрия, элементная сера отсутствует. Установка работает в данном режиме 24 мин. Количество очищенного газа составляет 40,08 м3, количество уловленного и окисленного сероводорода - 2,41 г-моль (81,94 г)
Пример 5.
То же, что в примере 4, но соотношение «сероводород: катализатор» составляет 17,36.
Содержание сероводорода в очищенной газовоздушной смеси не превышает 5 мг/м3. В поглотительном растворе на выходе из ЦБА отсутствуют H2S, HS-- и S2--ионы. Основными продуктами окисления являются сульфат и тиосульфат натрия, элементная сера отсутствует. Установка работает в данном режиме 43 мин. Количество очищенного газа составляет 73,48 м3, количество уловленного и окисленного сероводорода - 4,41 г-моль (149,94 г).
Пример 6.
То же, что в примере 1, но содержание H2S в очищаемой газовоздушной смеси составляет 0,15 об.%, а в качестве катализатора используют дисульфокислоту фталоцианина кобальта -СоРс(SO3H)2 (ДСФК), которая в поглотительном растворе, содержащем карбонат натрия, превращается в дисульфоната фталоцианина кобальта динатриевую соль СоРс(SO3Na)2. Причем ДСФК вводят в поглотительный раствор до подачи газовой смеси из расчета 1,28·10-6 моль/дм3 (1,00 мг/дм3 CoPc(SO3Na)2).
Содержание сероводорода в очищенной газовоздушной смеси не превышает 5 мг/м3. В поглотительном растворе на выходе из ЦБА отсутствуют H2S, HS-- и S2--ионы. Основными продуктами окисления являются сульфат и тиосульфат натрия, элементная сера отсутствует. Установка работает в данном режиме 24 мин. Количество очищенного воздуха составляет 40,45 м3, количество уловленного и окисленного сероводорода - 2,71 г-моль (92,14 г).
Пример 7.
То же, что в примере 6, но используют каталитическую систему, включающую катализаторы CoPc(SO3H)2 и MnCl2. Концентрация катализатора CoPc(SO3H)2 составляет 1,28·10-6 моль/дм3 (1,00 мг/дм3 CoPc(SO3Na)2), концентрация катализатора MnCl2 - 0,16 мг/дм3. Введение CoPc(SO3H)2 и MnCl2 осуществляют тем же способом, что и в примере 6.
Установка работает в данном режиме 36 мин. Содержание сероводорода в очищенной газовоздушной смеси не превышает 5 мг/м3. В поглотительном растворе на выходе из ЦБА отсутствуют H2S, HS-- и S2--ионы. Основными продуктами окисления являются сульфат и тиосульфат натрия, элементная сера отсутствует. Установка работает в данном режиме 36 мин. Количество очищенного газа составляет 60,45 м3, количество уловленного и окисленного сероводорода - 4,05 г-моль (137,70 г).
Пример 8.
То же, что в примере 7, но без предварительного получения смеси катализаторов в поглотительном растворе. Введение СоРс(SO3Н)2 в поглотительный раствор осуществляют так же, как и в примере 6, и в том же количестве. Введение MnCl2 осуществляют дробным дозированием в количестве, обеспечивающем соотношение подачи «H2S:MnCl2», равное 86,83 моль/моль.
Содержание сероводорода в очищенной газовоздушной смеси не превышает 5 мг/м3. В поглотительном растворе на выходе из ЦБА отсутствуют H2S, HS-- и S2--ионы. Основными продуктами окисления являются сульфат и тиосульфат натрия, элементная сера отсутствует. Установка работает в данном режиме 40 мин. Количество очищенного воздуха составляет 68,51 м3, количество уловленного и окисленного сероводорода - 4,59 г-моль (156,06 г).
Данные, приведенные в примерах 1-8, сведены в таблицу.
Из приведенных примеров и таблицы следует, что предлагаемый способ позволяет достигать высокой степени очистки газа от сероводорода с его одновременной утилизацией в виде нетоксичных растворимых кислородсодержащих соединений серы, преимущественно сульфатов и тиосульфатов.
1,28·10-6 моль/дм3 (1,0 мг/дм3)
СоРс(SO3Н)2
СоРс(SO3Н)2
MnCl2 дозируется в раствор одновременно с подачей очищаемой газовой смеси
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ОБЕЗВРЕЖИВАНИЯ СУЛЬФИДСОДЕРЖАЩИХ ЩЕЛОЧНЫХ РАСТВОРОВ | 2006 |
|
RU2319671C1 |
Способ очистки газа от сероводорода | 1987 |
|
SU1510898A1 |
Способ очистки газов от сероводорода | 1981 |
|
SU978899A1 |
Способ очистки газа от сероводорода | 1985 |
|
SU1344395A1 |
СПОСОБ ПОЛУЧЕНИЯ СЕРЫ ИЗ СЕРОВОДОРОДА | 2010 |
|
RU2448040C1 |
Способ очистки газов от сероводорода | 1981 |
|
SU1005850A1 |
СОРБЕНТ ДЛЯ ОЧИСТКИ НЕФТЯНЫХ ГАЗОВ ОТ СЕРОВОДОРОДА И СПОСОБ ЕГО ПОЛУЧЕНИЯ | 2013 |
|
RU2540670C1 |
Способ регенерации химикатов из дымовых газов сульфатно-целлюлозного производства | 1980 |
|
SU927876A1 |
СПОСОБ ОЧИСТКИ ВЕНТИЛЯЦИОННЫХ ВЫБРОСОВ ОТ СЕРОВОДОРОДА | 2023 |
|
RU2818437C1 |
СОРБЕНТ ДЛЯ ОЧИСТКИ НЕФТЯНЫХ ГАЗОВ ОТ СЕРОВОДОРОДА | 2013 |
|
RU2541081C1 |
Изобретение относится к области очистки от сероводорода кислородсодержащих газов, воздуха и газовоздушных смесей, в которых содержание H2S в об.% не превышает содержание кислорода. Очистку газов от сероводорода проводят в вихревых камерах с вращающимся газожидкостным слоем при продолжительности пребывания газов в слое от 0,001 до 0,1 с при противоточном контакте газов с жидким основным поглотителем. Поглотитель дополнительно содержит растворимый катализатор для окисления гидросульфидов кислородом. При этом в вихревой камере происходит также окисление уловленного сероводорода кислородом с образованием растворимых кислородсодержащих соединений серы, преимущественно, сульфатов и тиосульфатов. В качестве катализатора используют растворимую соль двухвалентного марганца или каталитическую систему, содержащую дисульфокислоту фталоцианина кобальта, или каталитическую систему, содержащую дисульфокислоту фталоцианина кобальта и растворимую соль двухвалентного марганца. Технический результат изобретения - высокая степень очистки газа от сероводорода с его одновременной утилизацией в виде кислородсодержащих соединений серы, преимущественно сульфатов и тиосульфатов. 3 з.п. ф-лы, 1 табл.
СПОСОБ ОЧИСТКИ ТЕХНОЛОГИЧЕСКИХ ГАЗОВ ОТ СЕРОВОДОРОДА | 2003 |
|
RU2245897C1 |
Способ очистки газов от сероводорода | 1981 |
|
SU978899A1 |
Способ очистки газов от сероводорода | 1981 |
|
SU1005850A1 |
Способ очистки газа от сероводорода | 1987 |
|
SU1510898A1 |
СПОСОБ УДАЛЕНИЯ СЕРНИСТЫХ СОЕДИНЕНИЙ, СОДЕРЖАЩИХСЯ В ОСТАТОЧНОМ ГАЗЕ | 1994 |
|
RU2116123C1 |
Устройство для выделения кадрового синхронизирующего слова | 1989 |
|
SU1704146A1 |
Детектор ошибок дуобинарного кода | 1985 |
|
SU1336253A1 |
JP 2000302412 A, 31.10.2000 | |||
УСТРОЙСТВО ДЛЯ КРЕМАЦИИ | 1996 |
|
RU2124162C1 |
Авторы
Даты
2008-04-27—Публикация
2006-04-13—Подача