ВЫСОКОПРОЧНАЯ СТАЛЬ МАРТЕНСИТНОГО КЛАССА Российский патент 2008 года по МПК C22C38/52 

Описание патента на изобретение RU2327801C1

Изобретение относится к области металлургии, конкретнее к составам высокопрочных сталей, используемых в специальных конструкциях в высокоупрочненном состоянии после закалки на мартенсит.

Листовая горячекатаная термоупрочненная сталь с повышенными бронезащитными свойствами должна обладать следующим комплексом механических и специальных характеристик (табл.1):

Таблица 1Свойства листовой стали для бронезащитных конструкцийHRC, ед.σт, МПаδ5, %KCU, МДж/см2Н, мм63-651700-20008-104-69,0Примечание: Н - минимальная толщина листа, выдерживающая без разрушения обстрел по нормали с расстояния 100 м 12,7-мм бронебойно-зажигательными пулями Б-32 с закаленными сердечниками

Известна конструкционная сталь следующего химического состава, мас.%:

Углерод0,46-0,56Кремний0,17-0,90Марганец0,10-1,00Хром2,80-5,00Никель1,50-3,00Молибден1,70-2,70Ванадий0,25-0,35ЖелезоОстальное [1].

Недостатки стали известного состава состоят в том, что горячекатаные листы в закаленном на мартенсит состоянии имеют низкие характеристики твердости и прочности. Это не позволяет использовать ее для изготовления бронезащитных конструкций.

Известна также сталь для подложки многослойной бронепреграды, содержащая компоненты в следующем соотношении, мас.%:

Углерод0,42-0,56Хром0,8-5,0Никель0,9-3,0Молибден0,2-2,7Ванадий0,1-0,35Марганец0,1-1,0Кремний0,17-0,9ЖелезоОстальное [2].

Недостатком данной стали являются низкие прочностные, вязкостные и бронезащитные свойства листов в закаленном состоянии: толщина Н листов не может быть менее 10 мм, а в случае минимальной концентрации всех легирующих ее элементов - не менее 13 мм.

Наиболее близкой по своему составу и свойствам к предложенной стали является легированная сталь для изготовления бронеэлементов следующего химического состава, мас.%:

Углерод + азот0,45-1,5Кремний0,9-1,5Марганец0,5-1,5Хром0,7-5,5Никель0,6-3,5Молибден0,15-0,75Сера + фосфорне более 0,010-0,016ЖелезоОстальное [3] - прототип.

Недостатки стали известного состава состоят в том, что горячекатаные листы, изготовленные из нее, после закалки сохраняют в структуре остаточный аустенит, в результате чего сталь имеет недостаточный уровень бронезащитных свойств. А именно при твердости закаленных листов менее 63 единиц HRC стандартные испытания на обстрел выдерживают листы толщиной не менее 15 мм.

Техническая задача, решаемая изобретением, состоит в повышении бронезащитных свойств закаленной стали.

Для решения поставленной технической задачи сталь для изготовления бронезащитных конструкций, содержащая углерод, кремний, марганец, хром, никель, молибден, серу, фосфор и железо, дополнительно содержит кобальт при следующем соотношении компонентов, мас.%:

Углерод0,25-0,65Кремний0,30-1,5Марганец0,30-1,5Хром0,5-3,5Никель0,3-1,2Молибден0,15-0,40Кобальт0,1-3,5Серане более 0,010Фосфорне более 0,012Железоостальное,

причем по мере увеличения концентрации углерода от минимального до максимального значения концентрацию никеля равномерно снижают от максимального до минимального значения, а кобальта - повышают от минимального до максимального значения.

Сущность предложенного технического решения состоит в следующем. Исследования показали, что резервом повышения бронезащитных свойств закаленной стали является уменьшение содержания в ее микроструктуре остаточного аустенита. Остаточный аустенит в закаленной стали сохраняется в виде распределенной между кристаллами мартенсита отдельной фазы, снижающей твердость, прочность и значение толщины Н. При этом с повышением концентрации в стали углерода имеет место снижение температуры начала мартенситного превращения аустенита, вследствие чего в процессе закалки в стали сохраняется все большее количество остаточного аустенита, поэтому повышения бронезащитных свойств не происходит.

Было установлено, что кобальт в стали предложенного состава обеспечивает одновременно как повышение температуры мартенситного превращения, так и вязко-пластических свойств, что присуще никелю. Поэтому увеличение концентрации кобальта по мере увеличения концентрации углерода позволяет снизить содержание остаточного аустенита в закаленной стали, а также уменьшить необходимое количество никеля. В результате сталь предложенного состава обретает более высокие бронезащитные свойства.

Углерод упрочняет сталь. При содержании углерода менее 0,25% не достигается требуемая прочность и твердость стали, а при его содержании более 0,65% снижаются вязкость, пластичность и бронезащитные свойства закаленной стали.

Кремний раскисляет сталь, повышает ее прочность и упругость. При концентрации кремния менее 0,30% прочность стали ниже допустимой, а при концентрации более 1,5% снижается пластичность и вязкость.

Марганец раскисляет и упрочняет сталь, связывает серу. При содержании марганца менее 0,30% прочность и твердость стали недостаточны. Увеличение содержания марганца более 1,5% приводит к снижению ударной вязкости закаленной стали.

Хром повышает прочность и вязкость стали. При его концентрации менее 0,5% прочность ниже допустимого значения. Увеличение содержания хрома более 3,5% приводит к потере пластичности из-за роста карбидов.

Никель способствует повышению пластичности и вязкости закаленной стали, но при его содержании более 1,2% повышается содержание остаточного аустенита в стали и бронезащитные свойства закаленных листов. Снижение содержания никеля менее 0,3% приводит к потере пластичности и ударной вязкости, листы не выдерживают баллистические испытания на бронестойкость.

Молибден образует мелкодисперсные карбиды, благоприятно изменяет распределение вредных примесей по границам зерен, повышает прочность и вязкость стали, обусловливает мелкозернистость микроструктуры. При содержании молибдена менее 0,15% прочность стали ниже требуемого уровня, а увеличение его содержания более 0,40% ухудшает пластичность закаленных листов.

Кобальт снижает содержание остаточного аустенита в стали и частично заменяет никель, уменьшая требуемую его концентрацию, сохраняет благоприятную дислокационную морфологию тонкой структуры мартенсита. При содержании кобальта менее 0,1% не достигается повышения бронезащитных свойств закаленных листов. Увеличение содержания кобальта сверх 3,5% не приводит к дальнейшему улучшению бронезащитных свойств, а лишь увеличивает расходы на легирующие.

Сера и фосфор в данной стали являются вредными примесями, их концентрация должна быть как можно меньшей. Однако при концентрации серы не более 0,010% и фосфора не более 0,012% их отрицательное влияние свойства стали незначительно. В то же время более глубокая десульфурация и дефосфорация стали существенно удорожат ее производство, что нецелесообразно.

Равномерное увеличение концентрации в стали кобальта от 0,1% до 3,5% по мере увеличения концентрации углерода от минимального значения 0,25% до максимального значения 0,65% способствует поддержанию температуры мартенситного превращения в интервале 400-200°С. Поэтому вне зависимости от конкретного значения концентрации углерода закаленная сталь не содержит остаточного аустенита и приобретает более высокие бронезащитные свойства. Причем поскольку кобальт в стали данного состава по своему воздействию на механические свойства заменяет никель, по мере увеличения концентрации кобальта от 0,1% до 3,5% концентрацию никеля следует равномерно снижать от 1,2% до 0,3%.

Стали различного химического состава выплавляли в электродуговой печи. В ковше сталь раскисляли ферромарганцем, ферросилицием, легировали феррохромом, ферромолибденом, вводили металлические никель и кобальт. С помощью синтетических шлаков удаляли избыток серы и фосфора. Химический состав выплавляемых сталей приведен в табл.2.

Таблица 2Состав сталей для изготовления бронезащитных конструкций№ составаСодержание химических элементов, мас.%СSiMnCrNiMoСоSРFe1.0,240,290,290,41,300,140,090,0070,008остальн.2.0,250,300,300,51,200,150,100,0080,010-:-3.0,450,900,902,00,750,271,800,0090,011-:-4.0,651,501,503,50,300,403,500,0100,012-:-5.0,661,601,603,60,200,503,60,0110,013-:-6.0,750,800,702,41,500,60-0,0050,004-:-

Сталь разливали в слитки и подвергали прокатке в слябы толщиной 100 мм. Затем слябы нагревали до температуры 1250°С и прокатывали на реверсивном стане кварто 2000 в листы толщиной от 8,5 до 15 мм. Прокатанные листы подвергали с прокатного нагрева немедленной закалке с температуры 850°С водой. Закаленные листы отпускали путем выдержки в течение 3 ч при температуре 200°С.

После охлаждения от листов отбирали пробы и производили испытания механических свойств. В таблице 3 приведены результаты испытаний свойств горячекатаных листов.

Из таблиц 2 и 3 следует, что предложенная сталь (составы №2-4), у которой по мере повышения концентрации углерода концентрация никеля равномерно снижается, а кобальта возрастает, имеет наиболее высокие механические и бронезащитные свойства: минимальная толщина листа, выдерживающая стандартные баллистико-ударные испытания, равна Н=8,5 мм.

При запредельных содержаниях химических элементов в сталях (составы №1 и №5), а также при использовании стали-прототипа (вариант 6) механические и бронезащитные свойства горячекатаных закаленных листов снижаются, значение Н возрастает до 12-15 мм.

Таблица 3Свойства листовых сталей различных составов№ составаHRC, ед.σт, МПаδ5, %KCU, МДж/см2Н, мм1.5915005312,02.631700958,53.6419001068,54.6520001068,55.6114506313,56.6115005215,0

Технико-экономические преимущества предложенной высокопрочной стали мартенситного класса состоят в том, что введение в ее состав кобальта, концентрация которого равномерно возрастает от 0,1% до 3,5% по мере возрастании концентрации углерода от 0,25% до 0,65%, обеспечивает при его закалке полное превращение аустенита в мартенсит диспергированной морфологии. Это повышает твердость и бронезащитные свойства закаленных листов. Одновременно с этим, поскольку кобальт по своему воздействию на механические свойства заменяет никель, то снижение его концентрации с 1,2% до 0,3% не сопровождается снижением пластических и вязкостных свойств закаленной стали и соответственно баллистико-ударной стойкости.

В качестве базового объекта принята сталь-прототип. Использование предложенной стали повысит эффективность бронезащитных конструкций на 8-10%.

Источники информации

1. А.с. СССР 1700091, ИПК C22C 38/46, 1982.

2. Пат. РФ 2102688, МПК F41H 5/04, 1998.

3. Пат. РФ 2139357, МПК C21D 9/42, F41H 11/02, 5/02, 1999.

Похожие патенты RU2327801C1

название год авторы номер документа
БРОНЕВАЯ ТЕРМОСТОЙКАЯ СВАРИВАЕМАЯ МАРТЕНСИТНАЯ СТАЛЬ 2008
  • Бащенко Анатолий Павлович
  • Трайно Александр Иванович
  • Фролов Владимир Анатольевич
  • Александров Валерий Юрьевич
RU2400558C2
СПОСОБ ПРОИЗВОДСТВА ЛИСТОВОЙ СТАЛИ 2012
  • Вольшонок Игорь Зиновьевич
  • Трайно Александр Иванович
  • Русаков Андрей Дмитриевич
  • Никитин Валентин Николаевич
  • Маслюк Владимир Михайлович
RU2499844C1
СПОСОБ ДЕФОРМАЦИОННО-ТЕРМИЧЕСКОГО ПРОИЗВОДСТВА ЛИСТОВОГО ПРОКАТА 2011
  • Трайно Александр Иванович
  • Бащенко Анатолий Павлович
  • Фролов Владимир Анатольевич
  • Фролов Дмитрий Владимирович
  • Русаков Андрей Дмитриевич
RU2481407C1
БРОНЕВАЯ СТАЛЬ 2011
  • Трайно Александр Иванович
  • Бащенко Анатолий Павлович
  • Фролов Владимир Анатольевич
  • Федоров Виктор Александрович
RU2447181C1
СПОСОБ ПРОИЗВОДСТВА ВЫСОКОПРОЧНОЙ ЛИСТОВОЙ СТАЛИ 2015
  • Салганик Виктор Матвеевич
  • Полецков Павел Петрович
  • Гущина Марина Сергеевна
RU2593810C1
СПОСОБ ПРОИЗВОДСТВА СВЕРХВЫСОКОПРОЧНОЙ ЛИСТОВОЙ СТАЛИ 2014
  • Чукин Михаил Витальевич
  • Салганик Виктор Матвеевич
  • Полецков Павел Петрович
  • Гущина Марина Сергеевна
RU2583229C9
СЛОИСТЫЙ БРОНЕЗАЩИТНЫЙ МАТЕРИАЛ 2009
  • Бащенко Анатолий Павлович
  • Васильев Юрий Леонидович
  • Кондратович Игорь Владимирович
  • Львов Валерий Владимирович
  • Пятков Михаил Иванович
  • Трайно Александр Иванович
  • Федоров Виктор Александрович
RU2429971C2
МАРТЕНСИТНОСТАРЕЮЩАЯ СТАЛЬ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕЕ 2002
  • Шубин А.Н.
  • Калитеевский А.К.
  • Глухов Н.П.
  • Ширяев Д.А.
  • Шлямнев А.П.
  • Сорокина Н.А.
RU2219276C1
СПОСОБ ПРОИЗВОДСТВА СТАЛЬНЫХ ЛИСТОВ ДЛЯ ГЕТЕРОГЕННЫХ БРОНЕЗАЩИТНЫХ КОНСТРУКЦИЙ 2010
  • Бащенко Анатолий Павлович
  • Трайно Александр Иванович
  • Федоров Виктор Александрович
  • Фролов Владимир Анатольевич
RU2415368C1
СПОСОБ ПРОИЗВОДСТВА ГЕТЕРОГЕННОЙ ЛИСТОВОЙ СТАЛИ 2012
  • Вольшонок Игорь Зиновьевич
  • Трайно Александр Иванович
  • Русаков Андрей Дмитриевич
RU2493270C1

Реферат патента 2008 года ВЫСОКОПРОЧНАЯ СТАЛЬ МАРТЕНСИТНОГО КЛАССА

Изобретение относится к металлургии, в частности к составам высокопрочных сталей, используемых в высокоупрочненном состоянии после закалки на мартенсит. Может использоваться в бронезащитных конструкциях. Сталь содержит, мас.%: углерод 0,25-0,65; кремний 0,30-1,5; марганец 0,30-1,5; хром 0,5-3,5; никель 0,3-1,2; молибден 0,15-0,40; кобальт 0,1-3,5; сера не более 0,010; фосфор не более 0,012; железо - остальное. Максимальному значению концентрации углерода соответствует максимальное значение содержания кобальта и минимальное значение концентрации никеля. Минимальному значению концентрации углерода соответствует минимальное значение содержания кобальта и максимальное значение концентрации никеля. Сталь обладает высокими бронезащитными свойствами. 3 табл.

Формула изобретения RU 2 327 801 C1

Высокопрочная мартенситная сталь для бронезащитных конструкций, содержащая углерод, кремний, марганец, хром, никель, молибден, серу, фосфор и железо, отличающаяся тем, что она дополнительно содержит кобальт при следующем соотношении компонентов, мас.%:

Углерод0,25-0,65Кремний0,30-1,5Марганец0,30-1,5Хром0,5-3,5Никель0,3-1,2Молибден0,15-0,40Кобальт0,1-3,5СераНе более 0,010ФосфорНе более 0,012Железо остальное,

причем максимальному значению концентрации углерода соответствует максимальное значение содержания кобальта и минимальное значение концентрации никеля, а минимальному значению концентрации углерода соответствует минимальное значение содержания кобальта и максимальное значение концентрации никеля.

Документы, цитированные в отчете о поиске Патент 2008 года RU2327801C1

УСТРОЙСТВО ДЛЯ КОНТРОЛЯ РЕЗИНЫ ПРИ РАСТЯЖЕНИИ 1971
SU423004A1
СПОСОБ ИЗГОТОВЛЕНИЯ СТАЛЬНЫХ МОНОЛИСТОВЫХ БРОНЕЭЛЕМЕНТОВ Б 100 СТ 1999
  • Бащенко А.П.
  • Федоров В.А.
  • Ситуха В.Н.
  • Львов В.В.
  • Анилионис Г.П.
RU2139357C1
ВЫСОКОПРОЧНАЯ БРОНЕВАЯ ЛИСТОВАЯ СТАЛЬ 1999
  • Камаев Е.А.
  • Сахаров С.А.
RU2185460C2
ВЫСОКОПРОЧНАЯ БРОНЕВАЯ ЛИСТОВАЯ СТАЛЬ 2001
  • Камаев Е.А.
  • Сахаров С.А.
RU2185459C1
БРОНЕВАЯ СТАЛЬ 2003
  • Григорян В.А.
  • Егоров А.И.
  • Легкодух А.М.
  • Заря Н.В.
  • Кудрявцева Н.С.
  • Маслова Н.С.
  • Сысоева В.С.
  • Фанасова Е.И.
  • Шарипова И.Х.
RU2236482C1
US 5458704 A, 17.10.1995
Походная разборная печь для варки пищи и печения хлеба 1920
  • Богач Б.И.
SU11A1
Способ восстановления хромовой кислоты, в частности для получения хромовых квасцов 1921
  • Ланговой С.П.
  • Рейзнек А.Р.
SU7A1

RU 2 327 801 C1

Авторы

Бащенко Анатолий Павлович

Трайно Александр Иванович

Завражнов Андрей Александрович

Кнохин Валерий Григорьевич

Иводитов Вадим Альбертович

Фролов Владимир Анатольевич

Александров Валерий Юрьевич

Даты

2008-06-27Публикация

2006-10-04Подача