Область техники
Изобретение относится к катализаторам из металлов платиновой группы на углеродном носителе и способам их получения, предназначенным для использования в электродах топливных элементов, электрохимических газовых сенсоров и других электрохимических устройств.
Предшествующий уровень техники
Известен платиновый катализатор (платиновая чернь), полученный восстановлением водного раствора платинохлорводородной кислоты (H2PtCl6·6Н2О) следующими восстановителями: 1 - гидразингидратом, 2 - формиатами щелочных металлов, 3 - уксусной кислотой, 4 - формальдегидом (Брауэр Г. Руководство по неорганическому синтезу, т.5: Справочник / Брауэр Г. М.: Мир, 1985, с.1807).
Максимальная удельная поверхность платины (около 25-30 м2/г) достигается при использовании в качестве восстановителя формиата лития. Однако при применении таких катализаторов в электродах газовых сенсоров, топливных элементов и в процессах дегидрирования углеводородов расход металла платиновой группы велик, и к тому же они теряют свои свойства во времени за счет агрегатирования частиц катализатора при приготовлении электродов. Для уменьшения расхода металла платиновой группы используют различные носители, на которые осаждают частицы металла платиновой группы.
Известен способ получения катализатора путем электрохимического осаждения металлов платиновой группы на частицы наноалмаза (Патент США 20050200260, 15.09.2005, МКИ Н01М 4/90). К недостаткам такого метода следует отнести трудность получения катализатора отдельно от подложки, на которую нанесены частицы наноалмаза, и сложность процесса получения. Этот катализатор предназначен для применения в топливных элементах, то есть требуется малая чувствительность к монооксиду углерода. Следовательно, катализатор не эффективен при применении в газовых сенсорах СО.
Из известных катализаторов и способов их получения наиболее близким по совокупности существенных признаков и достигаемому техническому результату является катализатор и способ его получения, описанный в патенте США (Патент США 4136059. 1979 г., Кл. В01L 21/18). Метод приготовления катализатора заключается в нанесении платины на графит или сажу из коллоидного раствора в присутствии дитионита натрия с последующим восстановлением муравьиной кислотой. К недостаткам таких катализаторов и аналогичным им при применении в коммерческих электрохимических газовых сенсорах СО следует отнести низкую селективность сенсоров СО (отношение чувствительностей SCO/SН2 не превышает 5-8). При применении такого катализатора для дегидрирования углеводородов будет происходить разрушение катализатора во времени выше 400°С из-за низкой термической стабильности графита за счет его окисления в присутствии небольших количеств воды и кислорода в углеводородах или в результате зауглероживания.
Сущность изобретения
Задачей данного изобретения является получение катализатора с высокой удельной поверхностью и эффективностью при использовании его в электродах электрохимических газовых сенсоров СО и для реакций дегидрирования углеводородов, например циклогексана.
Указанный технический результат достигается тем, что при получении катализатора в водный раствор солей/кислот металлов платиновой группы и формиата лития дополнительно вводят водную суспензию частиц наноалмаза с удельной поверхностью 200-600 м2/г и содержанием наноалмаза 20-85 мас.% по отношению к чистому металлу, а синтез ведут при температуре 20-40°С при рН 7 и концентрации кислот/солей в растворе от 10-3 до 5·10-3 г-моль/литр. В отсутствие частиц наноалмаза выделение осадка металла платиновой группы происходит при температуре 85-95°С. Внесение частиц наноалмаза в раствор снижает температуру выделения осадка до 20°С, т.е реакция идет в более мягких условиях, что позволяет получать катализатор с более высокой удельной поверхностью. В присутствии в растворе суспензии частиц наноалмаза ионы платиновых металлов связываются с функциональными группами на поверхности наноалмаза. При последующем восстановлении металл закрепляется на графитовой оболочке наноалмаза.
Описание катализатора и способа его получения
В качестве основы для нанесения металла платиновой группы использовали порошок синтетического наноалмаза марки УДА 46 с удельной поверхностью 400 м2/г. Нанокатализатор для электрохимического окисления СО получают следующим образом.
1. Сначала растворяют в 450 мл дистиллированной воды 1,1 г H2PtCI6·6Н2O и 0,1 г RhCl3 3Н2O, а затем нейтрализуют водным раствором углекислого натрия до рН 7. В раствор вливают раствор 450 мл формиата лития (10 мас.%) при 20°С. При этом выделение осадка не происходит.
2. В дистиллированную воду объемом 50 мл засыпают порошок наноалмаза массой 200 мг и выдерживают при температуре 95°С 15 минут. Суспензию охлаждают до 20°С.
3. Затем в раствор объемом 900 мл, содержащий растворенные соли платины и родия и формиат лития с рН 7, вливают 50 мл водной суспензии наноалмаза УДА 46 и выдерживают при температуре 25°С. В течение нескольких минут происходит выделение осадка. Осадок отмывают дистиллированной водой и сушат при 40°С. В отсутствие частиц наноалмаза выделение осадка происходит при температуре 85-95°С. После синтеза сначала определяли удельную поверхность образцов методом БЭТ, а затем определяли содержание основных компонентов и примесей методом рентгеноспектрального локального микроанализа.
В таблице 1 приведены данные микрорентгеновского анализа трех образцов катализатора, взятых для анализа:
При определении каталитических свойств катализатора измеряли токи реакции электрохимического окисления СО и водорода в газовом электроде на основе нанокатализатора и твердого электролита:
В качестве электролита использовали твердый протонный электролит Sb2О5 n Н2O(n=2-3,5). Индикаторный электрод сенсора массой 2 мг (видимая поверхность индикаторного электрода равна 0,125 см2) представлял собой смесь твердого протонного электролита и катализатора.
Индикаторный электрод: 25 мас.% - катализатор, остальное - Sb2O5 n Н2O. В качестве катализатора использовали образец №3 с удельной поверхностью 100 м2/г (вычисленный средний размер частиц 6-9 нм). Целью данного опыта являлось определение токов реакции электрохимического окисления СО и водорода в газовом электроде на основе катализатора и твердого электролита. Измерения проводили при концентрации СО или Н2 100 ppm (1 ppm = 1 млн-1). Измерение скоростей электрохимического окисления проводили при окислительном потенциале 800 мВ относительно стандартного водородного электрода.
Как видно из таблицы 2, нанокатализатор обладает высокой селективностью при электрохимическом окислении СО.
Нанокатализатор для дегидрирования углеводородов получают следующим образом:
1. Сначала растворяют в 450 мл дистиллированной воды 1,1 г H2PtCI6·6Н2O, а затем нейтрализуют водным раствором углекислого натрия до рН 7. В раствор вливают раствор 450 мл формиата лития (10 мас.%) при 20°С. При этом выделение осадка не происходит.
2. В дистиллированную воду объемом 50 мл засыпают порошок наноалмаза массой 300 мг и выдерживают при температуре 95°С 15 минут, затем воду охлаждают до 20°С.
3. Затем в раствор объемом 900 мл, содержащий растворенную платинохлорводородную кислоту и формиат лития с рН 7, вливают 50 мл водной суспензии наноалмаза УДА 46 и выдерживают при температуре 25°С. В течение нескольких минут происходит выделение осадка. Затем осадок отмывают дистиллированной водой и сушат при 40°С. В отсутствие частиц наноалмаза выделение осадка происходит при температуре 85-95°С.
Полученный катализатор обладает SУ=85 м2/г, при содержании наноалмаза в катализаторе 38 мас.%, а остальное платина.
Испытания катализатора в процессе дегидрирования циклогексана показали, что конверсия в бензол при температуре 500-550°С достигает 100%.
название | год | авторы | номер документа |
---|---|---|---|
КАТАЛИЗАТОР И СПОСОБ ЕГО ПОЛУЧЕНИЯ | 2008 |
|
RU2399993C2 |
НАНОКАТАЛИЗАТОР И СПОСОБ ЕГО ПОЛУЧЕНИЯ | 2009 |
|
RU2411994C2 |
КАТАЛИЗАТОР ДЛЯ ОКИСЛЕНИЯ МОНООКСИДА УГЛЕРОДА И СПОСОБ ЕГО ПОЛУЧЕНИЯ | 2009 |
|
RU2411993C1 |
НАНОСТРУКТУРИРОВАННЫЙ КАТАЛИЗАТОР ДЛЯ ДОЖИГАНИЯ МОНООКСИДА УГЛЕРОДА | 2012 |
|
RU2500469C1 |
КАТАЛИЗАТОР И СПОСОБ ДЕГИДРИРОВАНИЯ УГЛЕВОДОРОДОВ В ЕГО ПРИСУТСТВИИ | 2008 |
|
RU2394642C1 |
КАТАЛИЗАТОР ОКИСЛЕНИЯ ГОРЮЧИХ ГАЗОВ, СПОСОБ ЕГО ПОЛУЧЕНИЯ И СПОСОБ СИНТЕЗА СОЕДИНЕНИЯ-ПРЕДШЕСТВЕННИКА, СОДЕРЖАЩЕГО ИРИДИЙ | 2016 |
|
RU2635111C1 |
СПОСОБ ПОЛУЧЕНИЯ АКРИЛОВОЙ КИСЛОТЫ, СПОСОБ СЕЛЕКТИВНОГО ОКИСЛЕНИЯ МОНООКСИДА УГЛЕРОДА, КАТАЛИЗАТОР СЕЛЕКТИВНОГО ОКИСЛЕНИЯ МОНООКСИДА УГЛЕРОДА, СПОСОБ ЕГО ПОЛУЧЕНИЯ | 2016 |
|
RU2724109C1 |
КАТАЛИЗАТОР ДЛЯ ТВЁРДОПОЛИМЕРНЫХ ТОПЛИВНЫХ ЭЛЕМЕНТОВ И СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ | 2022 |
|
RU2802919C1 |
Катализаторы на основе металлов платиновой группы на носителях из оксида алюминия | 2023 |
|
RU2823764C1 |
СПОСОБ ПОЛУЧЕНИЯ МЕДЬСОДЕРЖАЩИХ НАНОКАТАЛИЗАТОРОВ С РАЗВИТОЙ ПОВЕРХНОСТЬЮ | 2013 |
|
RU2611620C2 |
Изобретение относится к катализаторам и способам их получения, предназначенным для использования в электродах электрохимических газовых сенсоров, топливных элементов и для реакций дегидрирования углеводородов. Согласно изобретению при получении катализатора в водный раствор комплексов металлов платиновой группы и формиата лития дополнительно вводят водную суспензию наноалмаза с удельной поверхностью 200÷600 м2/г и содержанием наноалмаза 20÷85 мас.% по отношению к чистому металлу, а синтез ведут при температуре 20÷40°С при рН 7 и концентрации кислот/солей в растворе от 10-3 до 5·10-3 г-моль/литр. Техническим результатом изобретения является высокая селективность катализатора при использовании его в индикаторных электродах электрохимических газовых сенсоров СО и высокая эффективность при дегидрировании углеводородов. 2 н. и 2 з.п. ф-лы, 2 табл.
платина 50÷60
родий 5÷9
наноалмаз остальное
US 4136059 А, 23.01.1979 | |||
US 2005200260 A1, 15.03.2005 | |||
RU 20096083 С1, 20.11.1997 | |||
SU 1593009 A1, 10.06.1999. |
Авторы
Даты
2009-02-27—Публикация
2007-11-08—Подача